
Why time is evil and what to
do about it: designing

distributed systems as pure
functional programs plus

interaction points

Peter Van Roy and Seyed Hossein Haeri
Université catholique de Louvain

PLDS ‘20 Workshop
March 4, 2020

1

Overview
� Purely functional distributed systems

� What is functional programming
� Lambda calculus and its properties
� Functional programming can be concurrent

� Examples: Kahn networks, pipelines
� Distributed systems can be as pure as functional systems

� Example: distributed pipeline

� General distributed systems are not pure
� Purely functional distributed systems are the starting point
� Add interaction points (“ports”)
� Add observational purity (“pure blocks”)
� Preliminary theoretical results

� Ongoing work
� Designing distributed systems with Piecewise Relative Observable Purity
� Proofs and applications in progress

2

Inspiration
� This work is inspired by the visions of the SyncFree and

LightKone EU projects (2013-16, 2017-19)
� SyncFree: synchronization-free computing
� LightKone: lightweight computation for networks at the

edge (lightkone.eu)

� Can we program distributed systems that achieve
consistency using weak synchronization models?
� RSMs are distributed data structures using consensus
� CRDTs are distributed data structures without consensus

� This work grew out of an attempt to understand what
“synchronization-free” means in a fundamental way

3

Purely functional
distributed systems

4

Functional programming
� Confluent reduction of an initial expression to a final result
� This has very strong mathematical properties that we can use

� For reasoning, debugging, testing, optimization, and maintenance

� For concurrency, parallelism, and distribution

� And there is no efficiency penalty compared to other paradigms

� But it can’t interact with the real world! Let’s see why:
� During the execution, we would like to accept inputs coming from

the real world and outputs going back to it
� Functional programming can’t do this because the execution of a

functional program is a step-by-step reduction of an initial expression to a
final result. Reduction steps take time, and the inputs will arrive during
this time. The reduction can’t use them unless we could put them in the
initial expression. But we can’t do this, because the inputs are not known
in advance.

5

Lambda (l) calculus
� Lambda calculus is the core of functional programming

� We define it and use it for concurrency and distribution

� Syntax
� x ::= (variables)

� t ::= x | (lx. t) | (t1 t2)

� Semantics (using substitution operation t[x])
� (lx. t[x]) → (ly. t[y]) a-conversion

� ((lx. t1) t2) → t1[x:=t2] b-reduction

� ((lx. (t x)) → t (if x not free in t) η-conversion

6

Properties of l calculus
� Data types and control structures

� Data types (lists, records, numbers, etc.) and control structures (if,
case, while, etc.) can be added to the l calculus without changing
anything essential

� Confluence
� Church-Rosser theorem: Final result of a reduction is the same

for all reduction orders (up to variable renaming)
� This holds for many variants of the l calculus

� Functional concurrency (examples will use l(fut) calculus)
� To give readable examples, we will use l(fut), a variation of l

calculus with single-assignment variables that is also confluent
� l(fut) easily expresses networks of concurrent agents. An agent has

internal state and sends and receives messages from neighbors.

7

Functional concurrency
(example in l(fut) calculus)

� Define agents, streams, and threads:
� Agent = tail-recursive function

executing in its own thread
� Stream = list read by one agent

and created by another agent
� Thread = a restriction on the

reductions we are interested in

fun prod(n)
delay(1000)
n|prod(n-1)

end

fun map(s, f)
case s of h|t then

f(h)|map(t, f)
[] nil then

nil
end

end

fun sum(s, a)
case s of h|t then

h+a|sum(t, h+a)
[] nil then

nil
end

end

local s1 s2 s3 in
thread s1=prod(1) end
thread s2=map(s1,fun (x) x*x end) end
thread s3=sum(s2,0) end

end

prod map sum
s1 s2 s3

8

Distributed l calculus
� We can easily make functional programming be distributed

� Consider a set of nodes N with a, b, c, … ∈ N

� Localize each term on a node
� x ::= (variables)
� ta ::= xa | (lx. tb)a | (tb

1 tc
2)a

� Terms can reference subterms on other nodes

� Extend the reduction rules to execute on single nodes
� (lx. ta[x])a → (ly. ta[y])a a-conversion
� ((lx.ta

1)a ta
2)a → ta

1[x:=ta
2] b-reduction

� ((lx. (ta xa)a)a → ta (if x not free in ta) η-conversion
� ta→ tb µ-conversion (mobility)

9

Distributed functional
concurrency (using l(fut))

� We put each agent on a node

� This gives a distributed
concurrent program that is
purely functional

� An agent always knows from
where the next input will come

fun prod(n)
delay(1000)
n|prod(n-1)

end

fun map(s, f)
case s of h|t then

f(h)|map(t, f)
[] nil then

nil
end

end

fun sum(s, a)
case s of h|t then

h+a|sum(t, h+a)
[] nil then

nil
end

end

local s1 s2 s3 in
node s1=prod(1) end
node s2=map(s1,fun (x) x*x end) end
node s3=sum(s2,0) end

end

prod map sum

node n1 node n2 node n3

s1 s2 s3

10

Distributed l calculus
is pure

11

� We prove that a distributed l reduction is equivalent to a
standard l reduction

� Message delays and reorderings can change the reductions, but
according to Church-Rosser this has no effect on the final result

General
distributed systems

12

Client/server example
� A client/server cannot be written in purely

functional distributed programming

� It is because to satisfy client liveness, the
server must accept each incoming
request in reasonable time

� Therefore the order of the requests
cannot be determined in advance
because it depends on client timing

� So the program is nondeterministic
� There is one interaction point, where the

program’s result is affected by the real
world: where the server receives messages

� We would like to express this in our calculus

Server

Client 1

Client 2 This point is
a real-world
interaction!

Interaction point = intuitively, a part of the system where the
real world affects the program’s result

13

Expressing interaction
points and purity

� The pure distributed lambda calculus can only be used
when there is no real-world interaction
� To be precise: when all inputs are known in advance

� First step: add interaction points
� There are many ways to do this

� Distributed l calculus extended with read and write
� The l(fut) calculus extended with ports (≈ asynch. channels)

� Second step: add observational purity
� This allows program transformations to move and hide

interaction points, to improve and verify systems
� The l(fut) calculus extended with pure blocks

14

Formal definition of
interaction point

� Consider a program’s execution as a lambda reduction:
e0 → e1 → e2 → … → em → en → …

� We define a side effect as an execution step that
arbitrarily changes the expression:
e0 → e1 → e2 → … → em ⤳ en → …

� The step em ⤳ en can be defined in various ways:
� Port (interaction point) : en receives a value from an external

source (could be an earlier send, or another system)
� Mutable state: en reads state from write earlier in the

reduction sequence (where write is an identity function)
� Failure: en drops information from em (message loss,

partition, node failure)

15

This
talk

Removing interaction points:
CRDT example

� Improve databases by removing interaction points

� For example, replace eventual consistency by:
� strong consistency (quorums). This fixes part of the

problem, but successive operations are still
nondeterministic. We can improve it by adding causal
order to the system, but it’s not simple.

� convergent consistency (Conflict-free Replicated Data
Types – CRDTs). A CRDT is a distributed data
structure that maintains consistency without needing
consensus. Realized in AntidoteDB database.

16

A CRDT has zero interaction points,
whereas a RSM has one interaction point

Piecewise relative
observable purity

17

l(port)0 =
l + ports + pure blocks

� port pa creates a channel s
� send e to pb causes e to appear on the channel s
� Ports are side effects because sends arrive asynchronously

� pureā {e} creates a pure block
� A promise to the programmer that e will have no side effects

observable from nodes ā (= a1, a2, …, an)
� We use pure blocks to do program transformations, such as removing

or combining side effects, and purely functional transformations

18

Ports
� A port is an asynchronous communication channel that is

designed to integrate well with l(fut)
� The port has a corresponding stream, which is a list that is built

incrementally by adding messages sent
� A computation that reads this list will synchronize on new

elements appearing

� Semantics:

port pa corresponds to stream s

send e to pa

create fresh stream s’
bind s to e::s’ (cons cell)
port pa corresponds to stream s’

19

Client/server in l(fut) + ports
� Now we can define a client/server
� fc and fs are pure functions
� There is just one interaction point

Server

Client 1

Client 2 Port p is the
interaction point

local s p in
node p=newport(s) server(state,s) end
node client(state1,p) end
node client(state2,p) end
… /* as many clients as we need */

end

fun client(state,p)
send(query(state),p)
client(fc(state),p)

end

fun server(state,s)
case s of q|t then

server(fs(q,state),t)
[] nil then

nil
end

end

One interaction point

20

Client/server in l(port)0

� The client/server written in l(port)0 syntax

� A client is a recursive function that sends to a port

� The server is a recursive function that reads from
the port’s stream

21

Pure blocks
� A pure block allows to delimit an expression that has no

observable side effects (= sends to ports)

� Assume nodes ā = a1, a2, …, an for some known n

� This is a promise to the programmer that e1, e2, …, en will not
have any observable side effects seen by nodes a1, a2, …, an .

� This can be checked at run-time or compile-time

22

pureā {
e1 ;
e2 ;
…
em ;

}

Pure block transformations

� We are working on a theory of pure block
transformations. Our first main result is:

� This theorem enables a pure block transformation:

if “e1 is pure w.r.t. nodes ā”
(nodes ā see no side effects from e1)

then
e1; pureā {e2} is equivalent to pureā {e1;e2}

23

Piecewise Relative
Observable Purity

� PROP is a design language for distributed systems where programs are
specified using l + ports + pure blocks:
� Programs are concurrent compositions of pure blocks
� Pure blocks specify relative to which nodes they are pure
� Pure blocks can be nested

� Example:

port p1 || port p2 || …
|| f1(x1, …, xm)=e1;…;en || f2(x1, …, xm)=e1;…;en || …
|| pureā {e1;e2}; e3; e4
|| pureḡ {e5; pureō {e6;e7}} || …

� We observe that realistic distributed systems are mostly functional
� Specifying what parts of the system are pure allows powerful transformation

and verification techniques
� This is still in an early stage and we are working hard on making it a practical

and useful approach for distributed systems design

24

Usefulness of PROP
� Key properties of purity and observational purity

� Order of interleaving makes no difference
� Executions are idempotent

� Many possible uses
� Testing and verifying pure subsystems is simplified
� Designing systems with awareness of interaction points
� Program transformations can isolate and reduce side

effects, increasing the usefulness
� Deterministic parallellism is straightforward
� Speculative execution, which improves performance by

trading off computation for communication, is simplified
� Partial evaluation is possible for pure subsystems

25

Conclusions
� There exists a useful purely functional subset of distributed programming

� Pure distributed computations do not interact with the real world (all inputs are
known in advance), but support message asynchrony and reordering

� General distributed programming consists of purely functional distributed
programming plus interaction points
� Many realistic distributed programs need very few interaction points: distributed

computations are mostly functional

� We want to design distributed systems explicitly as a purely functional
core plus interaction points
� To enable reasoning about purity, we add pure blocks to the design language

� We are working on a design language for specifying distributed systems,
called Piecewise Relative Observable Purity (PROP)
� We are investigating how this can be used as a tool for helping distributed

systems designers
� We are looking for feedback and suggestions on practical uses for PROP

26

Extra information

27

Read-write
distributed l calculus

� We add read and write operations to the distributed l calculus
� Result depends on reduction order and timing, so they are interaction points

� If the read returns the result of the most recent write, then it’s mutable state

� But write and read can also behave like send and receive

� Add read and write terms
� x ::= (variables)

� ta ::= xa | (lx. tb)a | (tb1 tc2)a | (s.tb)a | (ρx. tb)a

� Add two reduction rules
� (lx. ta[x]) → (ly. ta[y]) a-conversion

� ((lx.ta1) ta2)a → ta1[x:=ta2] b-reduction

� ((lx. (ta x))a → ta (if x not free in ta) η-conversion
� ta → tb μ-conversion (mobility)

� (s.ta)a → ta s-reduction (store or send, a.k.a. write)

� (ρx.ta1)a → ta1[x:=ta2] ρ-reduction (read or receive)

28

Eventual consistency
� Commonly done for performance

� Requests can be initiated
concurrently; multiple requests can be
“in flight” simultaneously; replies are
returned as quickly as possible

� Writes are eventually propagated to all
replicas; reads are eventually handled
by at least one replica

� Consider a replicated database
� A write is done and immediately

followed by a read (without waiting for
the write to finish)

� Does the read see the write?
� Sometimes yes, sometimes no!

� How should we think about this?
� Focus on the interaction points!

Can we get rid of them?

Replica 1

Replica 2

Replica 3

Write

Read

29

