
Selected Challenges in Concurrent
and Distributed Programming

Philipp Haller
KTH Royal Institute of Technology

Stockholm, Sweden

Workshop on Programming Languages and
Distributed Systems
March 5th & 6th, 2020

RISE Computer Science, Electrum Kista, Stockholm, Sweden

Joint work with Heather Miller, Normen Müller, Xin Zhao, Dominik Helm, Florian
Kübler, Jan Thomas Kölzer, Michael Eichberg, Guido Salvaneschi and Mira Mezini

Philipp Haller

Goals

• Programming languages for distributed systems that provide high
scalability, reliability, and availability

• Prevent bugs in distributed systems

 2

Philipp Haller

Challenge 1: Ensuring Fault-Tolerance Properties

• Specific fault-tolerance mechanism:  
Lineage-based fault recovery
– Lineage records dataset identifier plus transformations
– Maintaining lineage information in available, replicated storage enables

recovering from replica faults
• A widely-used fault-recovery mechanism (e.g., Apache Spark)

 3

How to statically ensure fault-tolerance properties
for languages based on lineage-based fault recovery?

Philipp Haller

Programming Model for Lineage-based Distributed
Computation

• A programming model
– for functional processing of distributed data,
– which provides abstractions for building fault-tolerant distributed

systems,
– including first-class lineages and futures.

• Complete formalization
– As an extension of typed lambda-calculus,
– with futures and distributable closures (“spores”),
– based on an asynchronous, distributed operational semantics

 4

Philipp Haller

Programming Model Illustrated

 5

Philipp Haller

Silos
What are they?

Silo[T]

T

SiloRef[T]

Two parts.

def apply
def send
def persist
def unpersist

SiloRef. Handle to a Silo.
Silo. Typed, stationary data container.

User interacts with SiloRef.

SiloRefs come with 4 primitive operations.
 6

Philipp Haller

Silos
What are they?

Silo[T]

T

SiloRef[T]

Primitive: apply

Takes a function that is to be applied to the data in the
silo associated with the SiloRef.

Creates new silo to contain the data that the user-
defined function returns; evaluation is deferred

def apply[S](fun: T => SiloRef[S]): SiloRef[S]

Enables interesting computation DAGsDeferred

def apply
def send
def persist
def unpersist

 7

Philipp Haller

Silos
What are they?

Silo[T]

T

SiloRef[T]

Primitive: send

Forces the built-up computation DAG to be sent to the
associated node and applied.

Future is completed with the result of the computation.

def send(): Future[T]

EAGER

def apply
def send
def persist
def unpersist

 8

Philipp Haller

More involved example

Silo[List[Person]]

Machine 1

SiloRef[List[Person]]

Let’s make an interesting DAG!

Machine 2

persons:
val persons: SiloRef[List[Person]] = ...

 9

Philipp Haller

More involved example

Silo[List[Person]]

Machine 1

SiloRef[List[Person]]

Let’s make an interesting DAG!

Machine 2

persons:
val persons: SiloRef[List[Person]] = ...
val adults =
 persons.apply(spore { ps =>
 val res = ps.filter(p => p.age >= 18)
 SiloRef.populate(currentHost, res)
 })

adults

 10

Philipp Haller

More involved example

Silo[List[Person]]

Machine 1

SiloRef[List[Person]]

Let’s make an interesting DAG!

Machine 2

persons:
val persons: SiloRef[List[Person]] = ...

val vehicles: SiloRef[List[Vehicle]] = ...

// adults that own a vehicle
val owners = adults.apply(spore {

 val localVehicles = vehicles // spore header
 ps =>
 localVehicles.apply(spore {

 val localps = ps // spore header
 vs =>

 SiloRef.populate(currentHost,
 localps.flatMap(p =>

 // list of (p, v) for a single person p
 vs.flatMap {

 v =>
 if (v.owner.name == p.name) List((p, v))
 else Nil

 }
)

)

adults

owners

vehicles

val adults =
 persons.apply(spore { ps =>
 val res = ps.filter(p => p.age >= 18)
 SiloRef.populate(currentHost, res)
 })

 11

Philipp Haller

More involved example

Silo[List[Person]]

Machine 1

SiloRef[List[Person]]

Let’s make an interesting DAG!

Machine 2

persons:
val persons: SiloRef[List[Person]] = ...

val vehicles: SiloRef[List[Vehicle]] = ...

// adults that own a vehicle
val owners = adults.apply(...)

adults

owners

vehicles

val adults =
 persons.apply(spore { ps =>
 val res = ps.filter(p => p.age >= 18)
 SiloRef.populate(currentHost, res)
 })

 12

Philipp Haller

More involved example

Silo[List[Person]]

Machine 1

SiloRef[List[Person]]

Let’s make an interesting DAG!

Machine 2

persons:
val persons: SiloRef[List[Person]] = ...

val vehicles: SiloRef[List[Vehicle]] = ...

// adults that own a vehicle
val owners = adults.apply(...)

adults

owners

vehicles

val sorted =
 adults.apply(spore { ps =>
 SiloRef.populate(currentHost,
 ps.sortWith(p => p.age))
 })
val labels =
 sorted.apply(spore { ps =>
 SiloRef.populate(currentHost,
 ps.map(p => "Hi, " + p.name))
 })

sorted

labels

val adults =
 persons.apply(spore { ps =>
 val res = ps.filter(p => p.age >= 18)
 SiloRef.populate(currentHost, res)
 })

 13

Philipp Haller

More involved example

Silo[List[Person]]

Machine 1

SiloRef[List[Person]]

Let’s make an interesting DAG!

Machine 2

persons:
val persons: SiloRef[List[Person]] = ...

val vehicles: SiloRef[List[Vehicle]] = ...

// adults that own a vehicle
val owners = adults.apply(...)

adults

owners

vehicles

sorted

labels

so far we just staged
computation, we haven’t yet
“kicked it off”.

val adults =
 persons.apply(spore { ps =>
 val res = ps.filter(p => p.age >= 18)
 SiloRef.populate(currentHost, res)
 })

val sorted =
 adults.apply(spore { ps =>
 SiloRef.populate(currentHost,
 ps.sortWith(p => p.age))
 })
val labels =
 sorted.apply(spore { ps =>
 SiloRef.populate(currentHost,
 ps.map(p => "Hi, " + p.name))
 })

 14

Philipp Haller

More involved example

Silo[List[Person]]

Machine 1

SiloRef[List[Person]]

Let’s make an interesting DAG!

Machine 2

persons:
val persons: SiloRef[List[Person]] = ...

val vehicles: SiloRef[List[Vehicle]] = ...

// adults that own a vehicle
val owners = adults.apply(...)

adults

owners

vehicles

sorted

labels λ

List[Person]⇒List[String]

Silo[List[String]]

val adults =
 persons.apply(spore { ps =>
 val res = ps.filter(p => p.age >= 18)
 SiloRef.populate(currentHost, res)
 })

val sorted =
 adults.apply(spore { ps =>
 SiloRef.populate(currentHost,
 ps.sortWith(p => p.age))
 })
val labels =
 sorted.apply(spore { ps =>
 SiloRef.populate(currentHost,
 ps.map(p => "Hi, " + p.name))
 })
labels.persist().send()

 15

Philipp Haller

Lineage-based Distributed Computation: Results

• Proof establishing the preservation of lineage mobility
• Proof of finite materialization of remote, lineage-based data
• P. Haller, H. Miller, N. Müller: A programming model and foundation for

lineage-based distributed computation  
J. Funct. Program. 28: e7 (2018)

 16

Philipp Haller

Challenge 2: Geo-Distribution

• Operating a service in multiple datacenters can improve latency and
availability for geographically distributed clients

• Geo-distribution directly supported by today's cloud platforms
• Challenge: round-trip latency

– < 2ms between servers within the same datacenter
– up to two orders of magnitude higher between distant datacenters

 17

Naive reuse of single-datacenter application
architectures and protocols leads to poor performance!

Philipp Haller

Data Consistency

• In order to satisfy latency, availability, and performance requirements of
distributed systems, developers use variety of data consistency models
– Theoretical limit given by CAP theorem1

• There is no one-size-fits-all consistency model

 18

How to safely use both consistent and available (but
inconsistent) data within the same application?

1 Gilbert, S., Lynch, N.: Brewer's conjecture and the feasibility of consistent, available,
partition-tolerant web services. SIGACT News 33(2), 51-59 (2002)

Philipp Haller

Consistency Types: Idea

To satisfy a range of performance, scalability, and consistency requirements,
provide two different kinds of replicated data types
1. Consistent data types:

– Serialize updates in a global total order: sequential consistency
– Do not provide availability (in favor of partition tolerance)

2. Available data types:
– Guarantee availability and performance (and partition tolerance)
– Weaken consistency: strong eventual consistency

 19

Philipp Haller

Consistency Types in LCD

LCD:
• A higher-order language with distributed references and consistency types
• Values and types annotated with labels indicating their consistency

 20

First-class
functions Replicated

data types

• Typed lambda-calculus
• ML-style references
• Labeled values and types

Philipp Haller

Consistency Types: Results

LCD: a higher-order language with replicated types and consistency labels
• Consistency types enable safe use of both strongly consistent and available

(weakly consistent) data within the same application
• Proofs of type soundness and noninterference
• Noninterference:  

Cannot observe mutations of available data via consistent data
• X. Zhao and P. Haller: Foundations of consistency types for a higher-order

distributed language  
32nd Workshop on Languages and Compilers for Parallel Computing (LCPC 2019)  
Companion technical report with proofs: 
https://arxiv.org/abs/1907.00822

 21

https://arxiv.org/abs/1907.00822

Philipp Haller

Challenge 3: Parallel Programming

• Increasing importance of static analysis (program analysis)
– Bug finding, security analysis, taint tracking, etc.

• Precise and powerful analyses have long running times
– Infeasible to integrate into nightly builds, CI, IDE, …
– Parallelization difficult: advanced static analyses not data-parallel

• Scaling static analyses to ever-growing software systems requires
maximizing utilization of multi-core CPUs

 22

Philipp Haller

Our Approach

• Novel concurrent programming model
– Generalization of futures/promises
– Guarantees deterministic outcomes (if used correctly)

• Implemented in Scala
– Statically-typed, integrates functional and object-oriented programming
– Supported backends: JVM, JavaScript (+ experimental native backend)

• Integrated with OPAL, a state-of-the-art JVM bytecode analysis framework

 23

Ongoing work on
checking correctness

Philipp Haller

Example
• Two key concepts: cells and handlers
• Cell completers permit writing, cells only reading (concurrently)

 24

val completer1 = CellCompleter[...]
val completer2 = CellCompleter[...]
val cell1 = completer1.cell
val cell2 = completer2.cell

cell2.when(cell1) { update =>
 if (update.value == Impure) FinalOutcome(Impure)
 else NoOutcome
}
completer1.putFinal(Impure)

Philipp Haller

Example
• Two key concepts: cells and handlers
• Cell completers permit writing, cells only reading (concurrently)

 25

val completer1 = CellCompleter[...]
val completer2 = CellCompleter[...]
val cell1 = completer1.cell
val cell2 = completer2.cell

cell2.when(cell1) { update =>
 if (update.value == Impure) FinalOutcome(Impure)
 else NoOutcome
}
completer1.putFinal(Impure)

Philipp Haller

Scheduling Strategies

• Priorities for message propagations depending on number of
dependencies of source/target nodes and dependees/dependers

 26

Philipp Haller

Experimental Evaluation

• Implementation of IFDS1 analysis framework
• Use IFDS framework to implement taint analysis

– search for methods with String parameter that is later used in an
invocation of Class.forName (i.e., reflective, dynamic class loading)

 27
1 Interprocedural Finite Distributive Subset

Philipp Haller

Parallel Static Analysis: Results

Analysis executed on Intel(R) Core(TM) i9-7900X CPU @ 3.30GHz (10 cores)
using 16 GB RAM running Ubuntu 18.04.3 and OpenJDK 1.8_212

 28

0

20

40

60

80

100

120

140 DefaultScheduling
SourcesWithManyTargetsLast
TargetsWithManyTargetsLast
TargetsWithManySourcesLast
SourcesWithManySourcesLast
OPAL - Sequential
Heros

Ru
nt

im
e

(s
)

Threads
1 5 10 15 20

20

25

30

35
• Heros: best speed-up

2.36x @ 8 threads
• RANG (us): speed-up

3.53x @ 8 threads,
3.98x @ 16 threads

Philipp Haller

Conclusion

• Challenge: 
Building distributed systems providing high scalability, reliability, and availability
– System builders use various unsafe techniques to achieve these properties
– How can we support system builders and prevent bugs?

• Thesis:  
Programming language techniques can help!
– Language constructs, abstractions

• for composing systems modularly
• for exploiting parallelism, replication, etc.

– Type systems and static analysis for preventing hard-to-reproduce bugs

 29

