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Goals

• Programming languages for distributed systems that provide high 
scalability, reliability, and availability 

• Prevent bugs in distributed systems
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Challenge 1: Ensuring Fault-Tolerance Properties

• Specific fault-tolerance mechanism:  
Lineage-based fault recovery 
– Lineage records dataset identifier plus transformations 
– Maintaining lineage information in available, replicated storage enables 

recovering from replica faults 
• A widely-used fault-recovery mechanism (e.g., Apache Spark)
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How to statically ensure fault-tolerance properties 
for languages based on lineage-based fault recovery?
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Programming Model for Lineage-based Distributed 
Computation

• A programming model
– for functional processing of distributed data, 
– which provides abstractions for building fault-tolerant distributed 

systems, 
– including first-class lineages and futures. 

• Complete formalization
– As an extension of typed lambda-calculus, 
– with futures and distributable closures (“spores”), 
– based on an asynchronous, distributed operational semantics
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Programming Model Illustrated
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Silos
What are they?

Silo[T]

T

SiloRef[T]

Two parts.

def apply
def send
def persist
def unpersist

SiloRef. Handle to a Silo.
Silo. Typed, stationary data container.

User interacts with SiloRef. 

SiloRefs come with 4 primitive operations.
 6
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Silos
What are they?

Silo[T]

T

SiloRef[T]

Primitive: apply

Takes a function that is to be applied to the data in the 
silo associated with the SiloRef.

Creates new silo to contain the data that the user-
defined function returns; evaluation is deferred

def apply[S](fun: T => SiloRef[S]): SiloRef[S]

Enables interesting computation DAGsDeferred

def apply
def send
def persist
def unpersist
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Silos
What are they?

Silo[T]

T

SiloRef[T]

Primitive: send

Forces the built-up computation DAG to be sent to the 
associated node and applied.

Future is completed with the result of the computation.

def send(): Future[T]

EAGER

def apply
def send
def persist
def unpersist
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More involved example

Silo[List[Person]]

Machine 1

SiloRef[List[Person]]

Let’s make an interesting DAG!

Machine 2

persons:
val persons: SiloRef[List[Person]] = ...

 9
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More involved example

Silo[List[Person]]

Machine 1

SiloRef[List[Person]]

Let’s make an interesting DAG!

Machine 2

persons:
val persons: SiloRef[List[Person]] = ...
val adults =
  persons.apply(spore { ps => 
    val res = ps.filter(p => p.age >= 18) 
    SiloRef.populate(currentHost, res) 
  })  

adults
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More involved example

Silo[List[Person]]

Machine 1

SiloRef[List[Person]]

Let’s make an interesting DAG!

Machine 2

persons:
val persons: SiloRef[List[Person]] = ...

val vehicles: SiloRef[List[Vehicle]] = ... 

// adults that own a vehicle 
val owners = adults.apply(spore { 

  val localVehicles = vehicles // spore header 
  ps => 
    localVehicles.apply(spore { 

      val localps = ps // spore header 
      vs => 

        SiloRef.populate(currentHost, 
          localps.flatMap(p => 

            // list of (p, v) for a single person p 
            vs.flatMap { 

              v => 
                if (v.owner.name == p.name) List((p, v)) 
                else Nil 

            } 
          ) 

        ) 

adults

owners

vehicles

val adults =
  persons.apply(spore { ps => 
    val res = ps.filter(p => p.age >= 18) 
    SiloRef.populate(currentHost, res) 
  })  
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More involved example

Silo[List[Person]]

Machine 1

SiloRef[List[Person]]

Let’s make an interesting DAG!

Machine 2

persons:
val persons: SiloRef[List[Person]] = ...

val vehicles: SiloRef[List[Vehicle]] = ... 

// adults that own a vehicle 
val owners = adults.apply(...)

adults

owners

vehicles

val adults =
  persons.apply(spore { ps => 
    val res = ps.filter(p => p.age >= 18) 
    SiloRef.populate(currentHost, res) 
  })  
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More involved example

Silo[List[Person]]

Machine 1

SiloRef[List[Person]]

Let’s make an interesting DAG!

Machine 2

persons:
val persons: SiloRef[List[Person]] = ...

val vehicles: SiloRef[List[Vehicle]] = ... 

// adults that own a vehicle 
val owners = adults.apply(...)

adults

owners

vehicles

val sorted = 
  adults.apply(spore { ps => 
    SiloRef.populate(currentHost, 
      ps.sortWith(p => p.age)) 
  }) 
val labels = 
  sorted.apply(spore { ps => 
    SiloRef.populate(currentHost, 
      ps.map(p => "Hi, " + p.name)) 
  })

sorted

labels

val adults =
  persons.apply(spore { ps => 
    val res = ps.filter(p => p.age >= 18) 
    SiloRef.populate(currentHost, res) 
  })  
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More involved example

Silo[List[Person]]

Machine 1

SiloRef[List[Person]]

Let’s make an interesting DAG!

Machine 2

persons:
val persons: SiloRef[List[Person]] = ...

val vehicles: SiloRef[List[Vehicle]] = ... 

// adults that own a vehicle 
val owners = adults.apply(...)

adults

owners

vehicles

sorted

labels

so far we just staged 
computation, we haven’t yet 
“kicked it off”.

val adults =
  persons.apply(spore { ps => 
    val res = ps.filter(p => p.age >= 18) 
    SiloRef.populate(currentHost, res) 
  })  

val sorted = 
  adults.apply(spore { ps => 
    SiloRef.populate(currentHost, 
      ps.sortWith(p => p.age)) 
  }) 
val labels = 
  sorted.apply(spore { ps => 
    SiloRef.populate(currentHost, 
      ps.map(p => "Hi, " + p.name)) 
  })

 14



Philipp Haller

More involved example

Silo[List[Person]]

Machine 1

SiloRef[List[Person]]

Let’s make an interesting DAG!

Machine 2

persons:
val persons: SiloRef[List[Person]] = ...

val vehicles: SiloRef[List[Vehicle]] = ... 

// adults that own a vehicle 
val owners = adults.apply(...)

adults

owners

vehicles

sorted

labels λ

List[Person]⇒List[String]

Silo[List[String]]

val adults =
  persons.apply(spore { ps => 
    val res = ps.filter(p => p.age >= 18) 
    SiloRef.populate(currentHost, res) 
  })  

val sorted = 
  adults.apply(spore { ps => 
    SiloRef.populate(currentHost, 
      ps.sortWith(p => p.age)) 
  }) 
val labels = 
  sorted.apply(spore { ps => 
    SiloRef.populate(currentHost, 
      ps.map(p => "Hi, " + p.name)) 
  }) 
labels.persist().send()
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Lineage-based Distributed Computation: Results

• Proof establishing the preservation of lineage mobility 
• Proof of finite materialization of remote, lineage-based data 
• P. Haller, H. Miller, N. Müller: A programming model and foundation for 

lineage-based distributed computation  
J. Funct. Program. 28: e7 (2018)
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Challenge 2: Geo-Distribution

• Operating a service in multiple datacenters can improve latency and 
availability for geographically distributed clients 

• Geo-distribution directly supported by today's cloud platforms 
• Challenge: round-trip latency 

– < 2ms between servers within the same datacenter 
– up to two orders of magnitude higher between distant datacenters

 17

Naive reuse of single-datacenter application 
architectures and protocols leads to poor performance!
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Data Consistency

• In order to satisfy latency, availability, and performance requirements of 
distributed systems, developers use variety of data consistency models 
– Theoretical limit given by CAP theorem1 

• There is no one-size-fits-all consistency model

 18

How to safely use both consistent and available (but 
inconsistent) data within the same application?

1 Gilbert, S., Lynch, N.: Brewer's conjecture and the feasibility of consistent, available, 
partition-tolerant web services. SIGACT News 33(2), 51-59 (2002)
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Consistency Types: Idea

To satisfy a range of performance, scalability, and consistency requirements, 
provide two different kinds of replicated data types 
1. Consistent data types:

– Serialize updates in a global total order: sequential consistency 
– Do not provide availability (in favor of partition tolerance) 

2. Available data types:
– Guarantee availability and performance (and partition tolerance) 
– Weaken consistency: strong eventual consistency

 19
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Consistency Types in LCD

LCD: 
• A higher-order language with distributed references and consistency types 
• Values and types annotated with labels indicating their consistency
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First-class 
functions Replicated 

data types

• Typed lambda-calculus 
• ML-style references 
• Labeled values and types
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Consistency Types: Results

LCD: a higher-order language with replicated types and consistency labels
• Consistency types enable safe use of both strongly consistent and available 

(weakly consistent) data within the same application 
• Proofs of type soundness and noninterference 
• Noninterference:  

Cannot observe mutations of available data via consistent data 
• X. Zhao and P. Haller: Foundations of consistency types for a higher-order 

distributed language  
32nd Workshop on Languages and Compilers for Parallel Computing (LCPC 2019)  
Companion technical report with proofs: 
https://arxiv.org/abs/1907.00822
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https://arxiv.org/abs/1907.00822
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Challenge 3: Parallel Programming

• Increasing importance of static analysis (program analysis) 
– Bug finding, security analysis, taint tracking, etc. 

• Precise and powerful analyses have long running times 
– Infeasible to integrate into nightly builds, CI, IDE, … 
– Parallelization difficult: advanced static analyses not data-parallel 

• Scaling static analyses to ever-growing software systems requires 
maximizing utilization of multi-core CPUs

 22
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Our Approach

• Novel concurrent programming model 
– Generalization of futures/promises 
– Guarantees deterministic outcomes (if used correctly) 

• Implemented in Scala 
– Statically-typed, integrates functional and object-oriented programming 
– Supported backends: JVM, JavaScript (+ experimental native backend) 

• Integrated with OPAL, a state-of-the-art JVM bytecode analysis framework

 23

Ongoing work on 
checking correctness
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Example
• Two key concepts: cells and handlers  
• Cell completers permit writing, cells only reading (concurrently)

 24

val completer1 = CellCompleter[...] 
val completer2 = CellCompleter[...] 
val cell1 = completer1.cell 
val cell2 = completer2.cell 

cell2.when(cell1) { update => 
  if (update.value == Impure) FinalOutcome(Impure) 
  else NoOutcome 
} 
completer1.putFinal(Impure)
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Example
• Two key concepts: cells and handlers  
• Cell completers permit writing, cells only reading (concurrently)
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val completer1 = CellCompleter[...] 
val completer2 = CellCompleter[...] 
val cell1 = completer1.cell 
val cell2 = completer2.cell 

cell2.when(cell1) { update => 
  if (update.value == Impure) FinalOutcome(Impure) 
  else NoOutcome 
} 
completer1.putFinal(Impure)
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Scheduling Strategies

• Priorities for message propagations depending on number of 
dependencies of source/target nodes and dependees/dependers
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Experimental Evaluation

• Implementation of IFDS1 analysis framework 
• Use IFDS framework to implement taint analysis 

– search for methods with String parameter that is later used in an 
invocation of Class.forName (i.e., reflective, dynamic class loading)

 27
1 Interprocedural Finite Distributive Subset
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Parallel Static Analysis: Results

Analysis executed on Intel(R) Core(TM) i9-7900X CPU @ 3.30GHz (10 cores) 
using 16 GB RAM running Ubuntu 18.04.3 and OpenJDK 1.8_212
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Conclusion

• Challenge: 
Building distributed systems providing high scalability, reliability, and availability 
– System builders use various unsafe techniques to achieve these properties 
– How can we support system builders and prevent bugs? 

• Thesis:  
Programming language techniques can help! 
– Language constructs, abstractions

• for composing systems modularly 
• for exploiting parallelism, replication, etc. 

– Type systems and static analysis for preventing hard-to-reproduce bugs
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