
Distribution Oblivious
Training Functions for ML

Jim Dowling
Assoc Prof @ KTH

CEO @ Logical Clocks

The Machine Learning Pipeline

Batch
Prediction

1.Feature Engineering 3. Training 4. Serving 5. Predictions2. Feature Selection

Kafka

Data
Lake

Feature
Engineering

Online
Feature Store

Offline
Feature Store

Data
Warehouse

Online
Application

Model
Serving

Model
Repository

Train Scoring &
Validation

Train/Test Data
(S3, HDFS, etc)

Feature
Selection

Deploy
Experiments

Monitor

Model Development in Practice

Model
Development

Hparam Tuning

Ablation Studies

Distributed Training

v

v

v

Python / Cluster

Python / Jupyter

Python / Cluster

Python / Cluster

re-write

re-write

re-write

Challenges
● How do I maintain up to 4 different code bases for training models?

DRY training code, please!

● What is Python / Cluster?

○ Dask, PySpark, Distributed TensorFlow, etc?

● Can I have a single execution framework to run all these 4 phases?

○ Kubernetes, python, spark-submit, Jupyter notebook

Programming Problem
● Model development is iterative and moving between distribution contexts

requires code updates

Our Solution

● Make the training loop oblivious to the given distribution context
● Maggy: a framework to support the distribution contexts based on PySpark

https://github.com/logicalclocks/maggy

https://github.com/logicalclocks/maggy

train_images = mnist.train_images()
train_labels = mnist.train_labels()
test_images = mnist.test_images()
test_labels = mnist.test_labels()

train_images = (train_images / 255) - 0.5
test_images = (test_images / 255) - 0.5

train_images = train_images.reshape((-1, 784))
test_images = test_images.reshape((-1, 784))

model = Sequential([
Dense(64, activation='relu', input_shape=(784,)),
Dense(64, activation='relu'),
Dense(10, activation='softmax'),

])

model.compile(
optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'],

)

model.fit(
train_images,
to_categorical(train_labels),
epochs=5,
batch_size=32,

)

model.evaluate(
test_images,
to_categorical(test_labels)

)

model.save_weights('model.h5')

predictions =
model.predict(test_images[:5])

Hyperparameters

Inner and Outer Loop of Machine Learning

Decouple Training Logic from Model/Dataset Generation

Laptop -> HParam Tuning -> Ablation Study ->Distributed Training

def decorator(train_fn, …): # Maggy framework code
connect to Maggy server
create reporter object to report statistics to the Driver
train_fn(…)

User-defined Training Function executed on all workers

from maggy import experiment
experiment.lagom(train, …)

User-defined Driver sets up dist context runs experiments

def train(model_gen, hparams, dist_strategy, data_gen):
with dist_strategy():

model = model_gen.create()
…..
model.compile()
model.fit(data_gen.batch())

Maggy Framework code

Search: Parallel Hyperparameter Tuning with Maggy

Learning
Black Box

Metric

Meta-level
learning &

optimization Parallel
WorkersQueue

Trial

Trial

Search space

https://databricks.com/session_eu19/asynchronous-hyperparameter-optimization-with-apache-sparkMoritz Meister

https://databricks.com/session_eu19/asynchronous-hyperparameter-optimization-with-apache-spark

Synchronous Parallel Trials with PySpark

Trial11

Driver

Trial12

Trial13

Trial1N

…

HDFS

Trial21

Trial22

Trial23

Trial2N

…

Barrier

Barrier

Trial31

Trial32

Trial33

Trial3N

…

Barrier
Metrics1 Metrics2 Metrics3

Synchronous Parallel Trials with Early Stopping

Trial11

Driver

Trial12

Trial13

Trial1N

…

HDFS

Trial21

Trial22

Trial23

Trial2N

…

Barrier

Barrier

Trial31

Trial32

Trial33

Trial3N

…

Barrier
Metrics1 Metrics2 Metrics3

Wasted Compute Wasted ComputeWasted Compute
Early Stop

Problem: PySpark is inefficient with Early Stopping
● PySpark’s bulk-synchronous execution model prevents efficient use of

early-stopping for hyperparameter optimization.

New Framework? Fix PySpark?

Solution: Long Running Tasks and a RPC framework

Trial11

Driver (Optimizer)

Trial12

Trial13

Trial1N

…

Barrier

Metrics

New Trial

Maggy User API

Develop your own Optimizer

Results

Hyperparameter Optimization Trial ASHA Validation Trial

ASHA
RS-ES

RS-NS

ASHA
RS-ES

RS-NS

Parallel Ablation Studies

PClassname survivesex sexname survive

Replacing the Maggy Optimizer with an Ablator:

● Feature Ablation using
the Feature Store

● Leave-One-Layer-Out Ablation

● Leave-One-Component-Out (LOCO)

Sina Sheikholeslami https://castor-software-days-2019.github.io/sina

https://castor-software-days-2019.github.io/sina

Maggy on Hopsworks

Hopsworks – Award Winning AI Platform

Datasources
Applications

API
Das hboards

Hopsworks

Apache Beam
Apache Spark Pip

Conda

Tensorflow
scikit-learn

PyTorch

J upyter
Notebooks

Tensorboard
Apache Beam
Apache Spark
Apache Flink

Kubernetes

Batch Dis tributed
ML & DL

Model
Serving

Hopsworks
Feature Store

Kafka +
Spark

Streaming

Model
Monitoring

Orches tration in Airflow

Data Preparation
& Inges tion

Experimentation
& Model Training

Deploy
& Productionalize

Streaming

Filesys tem and Metadata s torage
HopsFS

Apache
KafkaDatasources

Model Training Pipelines (with Notebooks)

Select
Features

Feature
Engineering

Validate &
Deploy Model

Experiment,
Train Model

Dataprep Pipeline Training and Deployment Pipeline

Feature
Store

Airflow Airflow

Pluggable ML Pipelines

Airflow DAG

Feature
Engineering

(.py, .scala,
.java)

Model
Registry

Train/Test Data

Metadata (Experiments, Provenance)

Airflow DAG

Feature
Selection
(.py, .ipynb)

Training
(.py, .ipynb)

Model
Validation
(.py, .ipynb)

Feature Store

Pluggable

Summary

● Model training and ML pipelines can benefit from framework and DSL support
● Maggy is a framework based on PySpark for transparent distributed ML

● Maggy References:
○ https://databricks.com/session_eu19/asynchronous-hyperparameter-optimization-with-apache-spark

○ https://fosdem.org/2020/schedule/event/maggy/

○ https://www.logicalclocks.com/research/towards-distribution-transparency-for-supervised-ml-with-
oblivious-training-functions

○ https://www.logicalclocks.com/blog/scaling-machine-learning-and-deep-learning-with-pyspark-on-
Hopsworks

○ https://castor-software-days-2019.github.io/sina (Ablation studies)

https://databricks.com/session_eu19/asynchronous-hyperparameter-optimization-with-apache-spark
https://fosdem.org/2020/schedule/event/maggy/
https://www.logicalclocks.com/research/towards-distribution-transparency-for-supervised-ml-with-oblivious-training-functions
https://www.logicalclocks.com/blog/scaling-machine-learning-and-deep-learning-with-pyspark-on-Hopsworks
https://castor-software-days-2019.github.io/sina

Maggy Team

● KTH/LC: Jim Dowling, Amir Payberah, Vlad Vlassov

● PhDs: Moritz Meister, Sina Sheikholeslami

● MScs Students: Kai Jeggle, Alessio Molinari

Thank you!

Register for a free account at
www.hops.site

Twitter

@logicalclocks

@hopsworks

GitHub

https://github.com/logicalclocks/hopsworks

https://github.com/hopshadoop/hops

http://www.hops.site/
https://github.com/logicalclocks/hopsworks
https://github.com/hopshadoop/hops

