Distribution Oblivious
Training Functions for ML

Jim Dowling
Assoc Prof @ KTH
CEO @ Logical Clocks

[0GICALCLOCKS

The Machine Learning Pipeline

1.Feature Engineering — 2. Feature Selection — 3. Training — 4. Serving - 5. Predictions
Monltor

—~
Data Online Model Online
Warehouse Feature Store Servmg Application
\ Experiments
eploy
Feature Feature . Scoring & Batch

/
/
Data Offline Train/Test Data NModel
Feature Store (S8, HDFS, etc) Reriository

Lake

Model Development in Practice

Model re-write
Development

re-write

re-write

Ablation Studies

Python" X Cluster - -
Distributed Training

Python / Cluster

Challenges

e How do | maintain up to 4 different code bases for training models?
DRY training code, please!

e Whatis Python / Cluster?

o Dask, PySpark, Distributed TensorFlow, etc?

e Can | have a single execution framework to run all these 4 phases?

o Kubernetes, python, spark-submit, Jupyter notebook

Programming Problem

e Model development is iterative and moving between distribution contexts
requires code updates

Our Solution

e Make the training loop oblivious to the given distribution context
e Maggy: a framework to support the distribution contexts based on PySpark

https://github.com/logicalclocks/maggy

train_images
train_labels
test_images
test_labels

mnist.train_images()

mnist.train_labels()
mnist.test_images()
mnist.test_Tlabels()

train_images = (train_images / 255) - 0.5
test_images = (test_images / 255) - 0.5

train_images = train_images.reshape((-1, 784))
test_images = test_images.reshape((-1, 784))

model = Sequential([
Dense (64, activation='relu', input_shape=(784,)),
Dense (64, activation='relu'),
Dense (10, activation='softmax'),

1)

model.compile(
optimizer="adam',
loss="'categorical_crossentropy',
metrics=['accuracy'],

model. fit(
train_images,
to_categorical(train_labels),
epochs=5,
batch_size=32,

model.evaluate(
test_images,
to_categorical(test_labels)

model.save_weights('model.h5")

predictions =
model.predict(test_images[:5])

Hyperparameters

'Inner and Outer Loop of Machine Learning

[Geacly |)Inner Learning Loop)

Algorithm or J Trial def train(model_gen, hparams, ...):

Human Expert JConfiguration
y

Y with distr_strategy():

model = model _gen(hparams)
model.compile(hparams)
data = data_gen(hparams)
result_dict = model.fit(data)
return result_dict —

N Parallel
S Metric Trials

Decouple Training Logic from Model/Dataset Generation

Model Training Dataset
Generation Logic Generation

Laptop -> HParam Tuning -> Ablation Study ->Distributed Training

def train(model_gen, hparams, ...): <

with distr_strategy(): lterative Development

model = model_gen(hparams)

model.compile(hparams)

data = data_gen(hparams) shared

result_dict = model.fit(data) : .

return result_dict : :

A

| — = -

Development Step

Explore, Design ~ —» Search/Tuning —» Explainability/Ablation | Distributed Training
Single HoAst Python |) X
e IR R i
. A A PySpark Cluster A

} _5 I~ —
Model Repository

Maggy Framework code

/

&
def decorator(train_fn, ..): # Maggy framework code
connect to Maggy server
create reporter object to report statistics to the Driver

train_fn(m)\\\\

<:;J;er—defined Training Function executed on all workers

def train(model_gen, hparams, dist_strategy, data_gen):
with dist_strategy():
model = model_gen.create()
model.compile()
model. fit(data_gen.batch())

User-defined Driver sets up dist context runs experiments

from maggy import experiment
experiment.lagom(train, ..)__

Search: Parallel Hyperparameter Tuning with Maggy

Search space

Meta-level] :
learning & — BleaLn:Bng
optimization A0 Parallel

I Queue Workers
Metric

Moritz Meister https://databricks.com/session_eu19/asynchronous-hyperparameter-optimization-with-apache-spark

https://databricks.com/session_eu19/asynchronous-hyperparameter-optimization-with-apache-spark

Synchronous Parallel Trials with PySpark

I Metrics

l Metrics,
>

Trialy, |=——-

————— —» Trial,; |————-

—> Trial 12 -~

Trial,, Trials,

—> Trial 13 [> Tr 121123 Trial33 _____

_____ TrlalZN -

Driver

Synchronous Parallel Trials with Early Stopping

Metrics, Metrics, Metrics;

—> Trlallz oY o 7 1rial,, | T 7T Ty 1naly, T T T —

—> Trla113 B

—>| Trial,y F—————- Trial,y

Early Stop Trial;y

- Wasted Compute Wasted Compute Wasted Compute

Driver

Problem: PySpark is inefficient with Early Stopping

e PySpark’s bulk-synchronous execution model prevents efficient use of
early-stopping for hyperparameter optimization.

» 2

New Framework? Fix PySpark?

Solution: Long Running Tasks and a RPC framework

—> Trialn _T _______________ _1 _________________________ —»
—»| Trialy, ——————— I St i -‘ —————————————————— -»>
o
Q
S.
—»| Trnaly; ——+————F——"———— - --- - —-—— - ——— —-»> (-?s
Metrics
—>
—»| Trial)y ——-F—————t—7————1 == ———g ===l ——— ————g————— —-»>

Driver (Optimizer)

Maggy User AP

sp = Searchspace(kernel=("'INTEGER', [2, 8]),
pool=("'INTEGER', [2, 8]))

def train_fn(kernel, pool):
for i in range(nr_iterations):

return accuracy

result = experiment.lagom(train_fn, searchspace=sp,
optimizer="randomsearch’,
num_trials=5, name='demo’,
direction="max")

Develop your own Optimizer

class CustomOptimizer(AbstractOptimizer):
def initialize(self):
pass
def get suggestion(self, trial=None):

pass
def finalize experiment(self, trials):
pass

class CustomEarlyStop(AbstractEarlyStop):

def earlystop check(to _check, finalized trials, direction):
pass

Results

Cuda Conv Net 0.75 ASHA Experiment
0.80 —
075 4‘_,—'i|—‘ 0.70 1 II
>0.701 > 0.65 1
% 0.65 1 g 0.601
2 3
3 0.601 j; 0.55
2 0.55 o
0.50 1 ASHA | —— ASHA
0.451 RS-ES 0.45 — RS-ES
0.40 —— RS-NS 0.40] —— RSNS
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100
time (min) time (min)
Hyperparameter Optimization Trial ASHA Validation Trial
Best Accuracy (Std) Trials (Std) Trials Stopped (Std) Best Accuracy (Std) Trials (Std) Trials Stopped (Std)
ASHA 08136 (0.02) 442 (0.0) 0(0.0) ASHA 0.7004 (0.03) 422 (38.69) 0 (0.0)
RS-ES 0.7958 (0.01) 120 (60.7) 90 (65.3) RS-ES 0.5438 (0.12) 112(7.53) 63 (6.43)

RS-NS 0.7747 (0.04) 36(0.0) 0(0.0) RS-NS 0.5306 (0.28) 40 (4.51) 0(0.0)

Parallel Ablation Studies

Replacing the Maggy Optimizer with an Ablator:

e Feature Ablation using —
the Feature Store

e Leave-One-Layer-Out Ablation

N - B

e Leave-One-Component-Out (LOCO)

Sina Sheikholeslami https://castor-software-days-2019.qithub.io/sina

https://castor-software-days-2019.github.io/sina

Maggy on Hopsworks

Hopsworks — Award Winning Al Platform

1:0 TOP 50

HLUHRDS

i
+ DatSai| =

TECHNOLOGY INNOVATION OF THE YEAR

‘e PAPIs.io

Al Startup Battle Winner I E E E

CCGRID 2017 SCALE CHALLENGE

Hopsworks

Distributed Applications
Machine Learning
Datasources & API

Deep Learning Dashboards

Streaming

Data Preparation Experimentation Deploy
& Ingestion & Model Training & Productionalize

\ 4

Datasources

Hopsworks

Orchestration in Airflow

Batch Distributed
ML & DL

Apache Beam Pi
Apache Spark P
Conda

Tensorflow
scikit-learn

H rk
OPSWOTKS PyTorch

, Feature Store
Streaming Jupyter

Notebooks
Apache Beam

Apache Spark
Apache Flink

Tensorboard

Filesystem and Metadata storage
HopsFS

Data Preparation Experimentation
&Ingestion &Model Training

Model
Serving

Kubernetes

Model
Monitoring
Kafka +

Spark
Streaming

Deplo
& Productionalize

Applications
API
Dashboards

Model Training Pipelines (with Notebooks)
kAirrow R{Airflow

Dataprep Pipeline Training and Deployment Pipeline
Feature Select Experiment, Validate &
Engineering Features Train Model Deploy Model

Feature
Sle"”(\Z {‘> Store — g— —

Jjupyter Jjupyter Jjupyter

Pluggable ML Pipelines

Pluggable
|

Airflow DAG Airflow DAG

Feature —_—
Selection Training V:I/ilg:tei:)n N
py, .ipynb :
(.py, .ipynb) (:py, ipynb) (py, .ipynb) Registry

Engineering
(.py, .scala,
.
Train/Test Data E
Metadata (Experiments, Provenance)

Feature Store

summary

e Model training and ML pipelines can benefit from framework and DSL support
e Maggy is a framework based on PySpark for transparent distributed ML

e Maggy References:

o https://databricks.com/session_eul19/asynchronous-hyperparameter-optimization-with-apache-spark

o https://fosdem.org/2020/schedule/event/maqqy/

o https://www.logicalclocks.com/research/towards-distribution-transparency-for-supervised-ml-with-
oblivious-training-functions

o https://www.logicalclocks.com/blog/scaling-machine-learning-and-deep-learning-with-pyspark-on-
Hopsworks
o https://castor-software-days-2019.qgithub.io/sina (Ablation studies)

https://databricks.com/session_eu19/asynchronous-hyperparameter-optimization-with-apache-spark
https://fosdem.org/2020/schedule/event/maggy/
https://www.logicalclocks.com/research/towards-distribution-transparency-for-supervised-ml-with-oblivious-training-functions
https://www.logicalclocks.com/blog/scaling-machine-learning-and-deep-learning-with-pyspark-on-Hopsworks
https://castor-software-days-2019.github.io/sina

Maggy eam

e KTH/LC: Jim Dowling, Amir Payberah, Vlad Vlassov

e PhDs: Moritz Meister, Sina Sheikholeslami

e MScs Students: Kai Jeggle, Alessio Molinari

LOGICALCLOCKS

Register for a free account at
www.hops.site

Twitter Y
@logicalclocks

@hopsworks

GitHubO

https://github.com/logicalclocks/hopsworks

https://github.com/hopshadoop/hops

http://www.hops.site/
https://github.com/logicalclocks/hopsworks
https://github.com/hopshadoop/hops

