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Challenges

e How do | maintain up to 4 different code bases for training models?
DRY training code, please!

e Whatis Python / Cluster?

o Dask, PySpark, Distributed TensorFlow, etc?

e Can | have a single execution framework to run all these 4 phases?

o Kubernetes, python, spark-submit, Jupyter notebook



Programming Problem

e Model development is iterative and moving between distribution contexts
requires code updates

Our Solution

e Make the training loop oblivious to the given distribution context
e Maggy: a framework to support the distribution contexts based on PySpark


https://github.com/logicalclocks/maggy
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mnist.train_images()

mnist.train_labels()
mnist.test_images()
mnist.test_Tlabels()

train_images = (train_images / 255) - 0.5
test_images = (test_images / 255) - 0.5

train_images = train_images.reshape((-1, 784))
test_images = test_images.reshape((-1, 784))

model = Sequential([
Dense (64, activation='relu', input_shape=(784,)),
Dense (64, activation='relu'),
Dense (10, activation='softmax'),

1)

model.compile(
optimizer="adam',
loss="'categorical_crossentropy',
metrics=['accuracy'],

model. fit(
train_images,
to_categorical(train_labels),
epochs=5,
batch_size=32,

model.evaluate(
test_images,
to_categorical(test_labels)

model.save_weights('model.h5")

predictions =
model.predict(test_images[:5])

Hyperparameters



'Inner and Outer Loop of Machine Learning
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Decouple Training Logic from Model/Dataset Generation
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Laptop -> HParam Tuning -> Ablation Study ->Distributed Training

def train(model_gen, hparams, ...): <

with distr_strategy(): lterative Development
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Maggy Framework code

/

&
def decorator(train_fn, ..): # Maggy framework code
# connect to Maggy server
# create reporter object to report statistics to the Driver

train_fn(m)\\\\

<:;J;er—defined Training Function executed on all workers

def train(model_gen, hparams, dist_strategy, data_gen):
with dist_strategy():
model = model_gen.create()
model.compile()
model. fit(data_gen.batch())

User-defined Driver sets up dist context runs experiments

from maggy import experiment
experiment.lagom(train, ..)__




Search: Parallel Hyperparameter Tuning with Maggy
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Moritz Meister https://databricks.com/session_eu19/asynchronous-hyperparameter-optimization-with-apache-spark



https://databricks.com/session_eu19/asynchronous-hyperparameter-optimization-with-apache-spark

Synchronous Parallel Trials with PySpark
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Synchronous Parallel Trials with Early Stopping
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Problem: PySpark is inefficient with Early Stopping

e PySpark’s bulk-synchronous execution model prevents efficient use of
early-stopping for hyperparameter optimization.

» 2

New Framework? Fix PySpark?




Solution: Long Running Tasks and a RPC framework
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Maggy User AP

sp = Searchspace(kernel=("'INTEGER', [2, 8]),
pool=("'INTEGER', [2, 8]))

def train_fn(kernel, pool):
for i in range(nr_iterations):

return accuracy

result = experiment.lagom(train_fn, searchspace=sp,
optimizer="randomsearch’,
num_trials=5, name='demo’,
direction="max")



Develop your own Optimizer

class CustomOptimizer(AbstractOptimizer):
def initialize(self):
pass
def get suggestion(self, trial=None):

pass
def finalize experiment(self, trials):
pass

class CustomEarlyStop(AbstractEarlyStop):

def earlystop check(to _check, finalized trials, direction):
pass



Results
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Parallel Ablation Studies

Replacing the Maggy Optimizer with an Ablator:

e Feature Ablation using —
the Feature Store

e Leave-One-Layer-Out Ablation

N - B

e Leave-One-Component-Out (LOCO)

Sina Sheikholeslami https://castor-software-days-2019.qithub.io/sina



https://castor-software-days-2019.github.io/sina

Maggy on Hopsworks
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Model Training Pipelines (with Notebooks)
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Pluggable ML Pipelines
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summary

e Model training and ML pipelines can benefit from framework and DSL support
e Maggy is a framework based on PySpark for transparent distributed ML

e Maggy References:

o https://databricks.com/session_eul19/asynchronous-hyperparameter-optimization-with-apache-spark

o https://fosdem.org/2020/schedule/event/maqqy/

o https://www.logicalclocks.com/research/towards-distribution-transparency-for-supervised-ml-with-
oblivious-training-functions

o https://www.logicalclocks.com/blog/scaling-machine-learning-and-deep-learning-with-pyspark-on-
Hopsworks
o https://castor-software-days-2019.qgithub.io/sina (Ablation studies)



https://databricks.com/session_eu19/asynchronous-hyperparameter-optimization-with-apache-spark
https://fosdem.org/2020/schedule/event/maggy/
https://www.logicalclocks.com/research/towards-distribution-transparency-for-supervised-ml-with-oblivious-training-functions
https://www.logicalclocks.com/blog/scaling-machine-learning-and-deep-learning-with-pyspark-on-Hopsworks
https://castor-software-days-2019.github.io/sina
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