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The Machine Learning Pipeline
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Model Development in Practice
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Challenges
● How do I maintain up to 4 different code bases for training models?

DRY training code, please!

● What is Python / Cluster?

○ Dask, PySpark, Distributed TensorFlow, etc?

● Can I have a single execution framework to run all these 4 phases?

○ Kubernetes, python, spark-submit, Jupyter notebook



Programming Problem
● Model development is iterative and moving between distribution contexts 

requires code updates

Our Solution

● Make the training loop oblivious to the given distribution context
● Maggy: a framework to support the distribution contexts based on PySpark

https://github.com/logicalclocks/maggy

https://github.com/logicalclocks/maggy


train_images = mnist.train_images()
train_labels = mnist.train_labels()
test_images = mnist.test_images()
test_labels = mnist.test_labels()

train_images = (train_images / 255) - 0.5
test_images = (test_images / 255) - 0.5

train_images = train_images.reshape((-1, 784))
test_images = test_images.reshape((-1, 784))

model = Sequential([
Dense(64, activation='relu', input_shape=(784,)),
Dense(64, activation='relu'),
Dense(10, activation='softmax'),

])

model.compile(
optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'],

)

model.fit(
train_images,
to_categorical(train_labels),
epochs=5,
batch_size=32,

)

model.evaluate(
test_images,
to_categorical(test_labels)

)

model.save_weights('model.h5')

predictions = 
model.predict(test_images[:5])

Hyperparameters



Inner and Outer Loop of Machine Learning



Decouple Training Logic from Model/Dataset Generation



Laptop -> HParam Tuning -> Ablation Study ->Distributed Training



def decorator(train_fn, …): # Maggy framework code
# connect to Maggy server
# create reporter object to report statistics to the Driver
train_fn(…)

User-defined Training Function executed on all workers

from maggy import experiment
experiment.lagom(train, …)  

User-defined Driver sets up dist context runs experiments

def train(model_gen, hparams, dist_strategy, data_gen):
with dist_strategy():

model = model_gen.create()
…..
model.compile()
model.fit(data_gen.batch())    

Maggy Framework code



Search: Parallel Hyperparameter Tuning with Maggy
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https://databricks.com/session_eu19/asynchronous-hyperparameter-optimization-with-apache-sparkMoritz Meister

https://databricks.com/session_eu19/asynchronous-hyperparameter-optimization-with-apache-spark


Synchronous Parallel Trials with PySpark
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Synchronous Parallel Trials with Early Stopping
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Problem: PySpark is inefficient with Early Stopping
● PySpark’s bulk-synchronous execution model prevents efficient use of 

early-stopping for hyperparameter optimization.

New Framework? Fix PySpark?



Solution: Long Running Tasks and a RPC framework
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Maggy User API



Develop your own Optimizer



Results
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Parallel Ablation Studies

PClassname survivesex sexname survive

Replacing the Maggy Optimizer with an Ablator:

● Feature Ablation using 
the Feature Store

● Leave-One-Layer-Out Ablation

● Leave-One-Component-Out (LOCO)

Sina Sheikholeslami https://castor-software-days-2019.github.io/sina

https://castor-software-days-2019.github.io/sina


Maggy on Hopsworks



Hopsworks – Award Winning AI Platform
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Model Training Pipelines (with Notebooks)
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Pluggable ML Pipelines
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Summary

● Model training and ML pipelines can benefit from framework and DSL support
● Maggy is a framework based on PySpark for transparent distributed ML

● Maggy References:
○ https://databricks.com/session_eu19/asynchronous-hyperparameter-optimization-with-apache-spark

○ https://fosdem.org/2020/schedule/event/maggy/

○ https://www.logicalclocks.com/research/towards-distribution-transparency-for-supervised-ml-with-
oblivious-training-functions

○ https://www.logicalclocks.com/blog/scaling-machine-learning-and-deep-learning-with-pyspark-on-
Hopsworks

○ https://castor-software-days-2019.github.io/sina (Ablation studies)

https://databricks.com/session_eu19/asynchronous-hyperparameter-optimization-with-apache-spark
https://fosdem.org/2020/schedule/event/maggy/
https://www.logicalclocks.com/research/towards-distribution-transparency-for-supervised-ml-with-oblivious-training-functions
https://www.logicalclocks.com/blog/scaling-machine-learning-and-deep-learning-with-pyspark-on-Hopsworks
https://castor-software-days-2019.github.io/sina


Maggy Team

● KTH/LC: Jim Dowling, Amir Payberah, Vlad Vlassov

● PhDs: Moritz Meister, Sina Sheikholeslami

● MScs Students: Kai Jeggle, Alessio Molinari



Thank you!

Register for a free account at 
www.hops.site

Twitter

@logicalclocks

@hopsworks

GitHub

https://github.com/logicalclocks/hopsworks

https://github.com/hopshadoop/hops

http://www.hops.site/
https://github.com/logicalclocks/hopsworks
https://github.com/hopshadoop/hops

