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[Q1]: What does a programming language 
         for data analytics definitely need?
[A1]: Data types

[Q2]: Which data types?
[A2]: Tables, Arrays, Streams, Graphs, …

[Q3]: Can [A1] be "combined" under one 
         system and programming model?
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Express Optimise Execute

Challenges:
• Abstraction level
• Syntax & type system
• Tooling & Integration

Challenges:
• State management
• Scheduling
• Failure recovery
• Profiling & Debugging

Challenges:
• Progressive lowering
• Algebraic simplification
• Instruction selection
• Cost model
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Pre-processing Training

Machine Learning Pipeline

(Relational Algebra + UDFs) (Linear Algebra + Iterations)
Collection transformation Numerical computation

Problem? Current systems used for ML are tailored to either 
processing (Spark, Flink, etc.) or training (TensorFlow, SystemML, etc.)

➡No holistic optimisation

Solution? Lara: A language for Linear Algebra and Relational Algebra
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11

Compiler infrastructure of

languages using LLVM

Problem: No re-use between IR compilers
➡A compiler infrastructure like LLVM's is needed

Problem: LLVM is locked to one level of abstraction
➡ There is a need for a more general solution

Compiler infrastructure of

Google's TensorFlow
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def GreaterThanOp : Op<"greater_than", [ArgsAreSameType, NoSideEffect]> { 
 
 

 
 
 

}

  let summary     = "greater than operation"; 
  let description = [{ Returns true if $left is greater than $right }];
  let arguments   = (ins AnyType:$left, AnyType:$right);
  let results     = (outs BoolType:$output);
  !// Optional
  let regions     = !!...
  let verifier    = !!...
  let parser      = !!...
  let printer     = !!...
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(yi − Xiw)2 + λ
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∑
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ŵridge = (XTX + λI) \ (XTy)
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ŵridge = arg min
w

N

∑
i=1

(yi − Xiw)2 + λ
K

∑
i=1

w2
i

MSE =
1
N

N

∑
i=1

(yi − Xiw)2

Input data: [L,N,N,N,N,N,N,N,N,N,N,C,C,C,C,C]



Lara's DSL - Example

17

Description 

Based on numerical and categorical 
data, train a Ridge Regression model 
with 3-fold cross-validation, and  
Mean Squared Error as the loss function, 
to the predict number of future clicks on 
advertisements

{
{
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