
Presented by Klas Segeljakt <klasseg@kth.se>

Arc
An MLIR Dialect for Data Analytics

Joint work with

Frej Drejhammar <frej.drejhammar@ri.se>
Khoa Dinh <khoad@kth.se>

PLDS' 20 Workshop
March 5, 2020

mailto:klasseg@kth.se
mailto:frej.drejhammar@ri.se
mailto:khoad@kth.se

• Outline

• Introduction & Problem

• Related Work

• Arc & MLIR

• Summary

Introduction & Problem

3

Introduction & Problem

3

Introduction & Problem

3

[Q1]: What does a programming language 
 for data analytics definitely need?

Introduction & Problem

3

[Q1]: What does a programming language 
 for data analytics definitely need?
[A1]: Data types

Introduction & Problem

3

[Q1]: What does a programming language 
 for data analytics definitely need?
[A1]: Data types

[Q2]: Which data types?

Introduction & Problem

3

[Q1]: What does a programming language 
 for data analytics definitely need?
[A1]: Data types

[Q2]: Which data types?
[A2]: Tables, Arrays, Streams, Graphs, …

Introduction & Problem

3

[Q1]: What does a programming language 
 for data analytics definitely need?
[A1]: Data types

[Q2]: Which data types?
[A2]: Tables, Arrays, Streams, Graphs, …

[Q3]: Can [A1] be "combined" under one 
 system and programming model?

Introduction & Problem

4

Introduction & Problem

4

Express Optimise Execute

Introduction & Problem

4

Express Optimise Execute
Front-end

Domain Specific
Language (DSL)

Middle-end
Intermediate

Representation (IR)

Back-end
Distributed

Runtime

Introduction & Problem

4

Express Optimise Execute

Challenges: Challenges:Challenges:

Front-end
Domain Specific
Language (DSL)

Middle-end
Intermediate

Representation (IR)

Back-end
Distributed

Runtime

Introduction & Problem

4

Express Optimise Execute

Challenges:
• Abstraction level
• Syntax & type system
• Tooling & Integration

Challenges:Challenges:

Front-end
Domain Specific
Language (DSL)

Middle-end
Intermediate

Representation (IR)

Back-end
Distributed

Runtime

Introduction & Problem

4

Express Optimise Execute

Challenges:
• Abstraction level
• Syntax & type system
• Tooling & Integration

Challenges:Challenges:
• Progressive lowering
• Algebraic simplification
• Instruction selection
• Cost model

Front-end
Domain Specific
Language (DSL)

Middle-end
Intermediate

Representation (IR)

Back-end
Distributed

Runtime

Introduction & Problem

4

Express Optimise Execute

Challenges:
• Abstraction level
• Syntax & type system
• Tooling & Integration

Challenges:
• State management
• Scheduling
• Failure recovery
• Profiling & Debugging

Challenges:
• Progressive lowering
• Algebraic simplification
• Instruction selection
• Cost model

Front-end
Domain Specific
Language (DSL)

Middle-end
Intermediate

Representation (IR)

Back-end
Distributed

Runtime

Related Work

5

Streams

Related Work

5

Beam[1]

ArraysStreams

Related Work

5

Beam[1]

Halide[3]

NumPy[2]

Tables

ArraysStreams

Related Work

5

CQL[5]

Beam[1]

SQL[4]

Halide[3]

Lara[6]

NumPy[2]

GraphsTables

ArraysStreams

Related Work

5

CQL[5]

Beam[1]

SQL[4]

Halide[3]

Lara[6]

NumPy[2]

Presto[9]

Cypher[10]

Tegra[8]

Pregel[7]

GraphsTables

ArraysStreams

Related Work

5

CQL[5]

Beam[1]

SQL[4]

Halide[3]

???

Lara[6]

NumPy[2]

Presto[9]

Cypher[10]

Tegra[8]
???

???

??? ???

Pregel[7]

GraphsTables

ArraysStreams

Related Work

5

CQL[5]

Beam[1]

SQL[4]

Halide[3]

???

Lara[6]

NumPy[2]

Presto[9]

Cypher[10]

Tegra[8]
???

???

??? ???

Pregel[7]

Lara[6]

6

What is Lara?

6

What is Lara?

Where did Lara come from?

7

Where did Lara come from?

7

Pre-processing Training

Machine Learning Pipeline

Where did Lara come from?

7

Pre-processing Training

Machine Learning Pipeline

(Relational Algebra + UDFs)
Collection transformation

Where did Lara come from?

7

Pre-processing Training

Machine Learning Pipeline

(Relational Algebra + UDFs) (Linear Algebra + Iterations)
Collection transformation Numerical computation

Where did Lara come from?

7

Pre-processing Training

Machine Learning Pipeline

(Relational Algebra + UDFs) (Linear Algebra + Iterations)
Collection transformation Numerical computation

Problem? Current systems used for ML are tailored to either
processing (Spark, Flink, etc.) or training (TensorFlow, SystemML, etc.)

Where did Lara come from?

7

Pre-processing Training

Machine Learning Pipeline

(Relational Algebra + UDFs) (Linear Algebra + Iterations)
Collection transformation Numerical computation

Problem? Current systems used for ML are tailored to either
processing (Spark, Flink, etc.) or training (TensorFlow, SystemML, etc.)

➡No holistic optimisation

Where did Lara come from?

7

Pre-processing Training

Machine Learning Pipeline

(Relational Algebra + UDFs) (Linear Algebra + Iterations)
Collection transformation Numerical computation

Problem? Current systems used for ML are tailored to either
processing (Spark, Flink, etc.) or training (TensorFlow, SystemML, etc.)

➡No holistic optimisation

Solution? Lara: A language for Linear Algebra and Relational Algebra

How does Lara work?

8

How does Lara work?
Lara has a Quotation Based DSL embedded in Scala.

8

How does Lara work?
Lara has a Quotation Based DSL embedded in Scala.

Types (Monads):
• DataBag A !!::= Multiset A
• Vector A !!::= Set (ℕ, A)
• Matrix A !!::= Set ((ℕ, ℕ), A)

8

How does Lara work?
Lara has a Quotation Based DSL embedded in Scala.

Types (Monads):
• DataBag A !!::= Multiset A
• Vector A !!::= Set (ℕ, A)
• Matrix A !!::= Set ((ℕ, ℕ), A)

Operations:
• For-comprehensions
• Linear algebra functions

8

How does Lara work?
Lara has a Quotation Based DSL embedded in Scala.

Types (Monads):
• DataBag A !!::= Multiset A
• Vector A !!::= Set (ℕ, A)
• Matrix A !!::= Set ((ℕ, ℕ), A)

Operations:
• For-comprehensions
• Linear algebra functions

Type conversions track provenance:
• DataBag (ℕ, Vector A) !-> Matrix A
• DataBag A !-> (A !-> (ℕ, ℕ)) !-> Matrix A

8

How does Lara work?
Lara has a Quotation Based DSL embedded in Scala.

Types (Monads):
• DataBag A !!::= Multiset A
• Vector A !!::= Set (ℕ, A)
• Matrix A !!::= Set ((ℕ, ℕ), A)

Operations:
• For-comprehensions
• Linear algebra functions

Type conversions track provenance:
• DataBag (ℕ, Vector A) !-> Matrix A
• DataBag A !-> (A !-> (ℕ, ℕ)) !-> Matrix A

DataBag (ℕ, Vector A)

(0,[f,o,o])

(2,[b,a,z])

(1,[b,a,
r])

8

How does Lara work?
Lara has a Quotation Based DSL embedded in Scala.

Types (Monads):
• DataBag A !!::= Multiset A
• Vector A !!::= Set (ℕ, A)
• Matrix A !!::= Set ((ℕ, ℕ), A)

Operations:
• For-comprehensions
• Linear algebra functions

Type conversions track provenance:
• DataBag (ℕ, Vector A) !-> Matrix A
• DataBag A !-> (A !-> (ℕ, ℕ)) !-> Matrix A

DataBag (ℕ, Vector A)

(0,[f,o,o])

(2,[b,a,z])

(1,[b,a,
r])

8

[f,o,o]
[b,a,r]
[b,a,z]

Matrix A

How does Lara work?
Lara has a Quotation Based DSL embedded in Scala.

Types (Monads):
• DataBag A !!::= Multiset A
• Vector A !!::= Set (ℕ, A)
• Matrix A !!::= Set ((ℕ, ℕ), A)

Operations:
• For-comprehensions
• Linear algebra functions

Type conversions track provenance:
• DataBag (ℕ, Vector A) !-> Matrix A
• DataBag A !-> (A !-> (ℕ, ℕ)) !-> Matrix A

DataBag (ℕ, Vector A)

(0,[f,o,o])

(2,[b,a,z])

(1,[b,a,
r])

Lara also has an IR with two "views".

8

[f,o,o]
[b,a,r]
[b,a,z]

Matrix A

How does Lara work?
Lara has a Quotation Based DSL embedded in Scala.

Types (Monads):
• DataBag A !!::= Multiset A
• Vector A !!::= Set (ℕ, A)
• Matrix A !!::= Set ((ℕ, ℕ), A)

Operations:
• For-comprehensions
• Linear algebra functions

Type conversions track provenance:
• DataBag (ℕ, Vector A) !-> Matrix A
• DataBag A !-> (A !-> (ℕ, ℕ)) !-> Matrix A

DataBag (ℕ, Vector A)

(0,[f,o,o])

(2,[b,a,z])

(1,[b,a,
r])

Lara also has an IR with two "views".

A Monadic View that enables Dataflow optimisations

8

[f,o,o]
[b,a,r]
[b,a,z]

Matrix A

How does Lara work?
Lara has a Quotation Based DSL embedded in Scala.

Types (Monads):
• DataBag A !!::= Multiset A
• Vector A !!::= Set (ℕ, A)
• Matrix A !!::= Set ((ℕ, ℕ), A)

Operations:
• For-comprehensions
• Linear algebra functions

Type conversions track provenance:
• DataBag (ℕ, Vector A) !-> Matrix A
• DataBag A !-> (A !-> (ℕ, ℕ)) !-> Matrix A

DataBag (ℕ, Vector A)

(0,[f,o,o])

(2,[b,a,z])

(1,[b,a,
r])

Lara also has an IR with two "views".

A Monadic View that enables Dataflow optimisations
➡Operator Fusion and Operator Pushdown

8

[f,o,o]
[b,a,r]
[b,a,z]

Matrix A

How does Lara work?
Lara has a Quotation Based DSL embedded in Scala.

Types (Monads):
• DataBag A !!::= Multiset A
• Vector A !!::= Set (ℕ, A)
• Matrix A !!::= Set ((ℕ, ℕ), A)

Operations:
• For-comprehensions
• Linear algebra functions

Type conversions track provenance:
• DataBag (ℕ, Vector A) !-> Matrix A
• DataBag A !-> (A !-> (ℕ, ℕ)) !-> Matrix A

DataBag (ℕ, Vector A)

(0,[f,o,o])

(2,[b,a,z])

(1,[b,a,
r])

Lara also has an IR with two "views".

Element-wise
vector addition

x + y

A Monadic View that enables Dataflow optimisations
➡Operator Fusion and Operator Pushdown

8

[f,o,o]
[b,a,r]
[b,a,z]

Matrix A

How does Lara work?
Lara has a Quotation Based DSL embedded in Scala.

Types (Monads):
• DataBag A !!::= Multiset A
• Vector A !!::= Set (ℕ, A)
• Matrix A !!::= Set ((ℕ, ℕ), A)

Operations:
• For-comprehensions
• Linear algebra functions

Type conversions track provenance:
• DataBag (ℕ, Vector A) !-> Matrix A
• DataBag A !-> (A !-> (ℕ, ℕ)) !-> Matrix A

DataBag (ℕ, Vector A)

(0,[f,o,o])

(2,[b,a,z])

(1,[b,a,
r])

Lara also has an IR with two "views".

Element-wise
vector addition

x + y

A Monadic View that enables Dataflow optimisations
➡Operator Fusion and Operator Pushdown

8

[f,o,o]
[b,a,r]
[b,a,z]

Matrix A

How does Lara work?
Lara has a Quotation Based DSL embedded in Scala.

Types (Monads):
• DataBag A !!::= Multiset A
• Vector A !!::= Set (ℕ, A)
• Matrix A !!::= Set ((ℕ, ℕ), A)

Operations:
• For-comprehensions
• Linear algebra functions

Type conversions track provenance:
• DataBag (ℕ, Vector A) !-> Matrix A
• DataBag A !-> (A !-> (ℕ, ℕ)) !-> Matrix A

DataBag (ℕ, Vector A)

(0,[f,o,o])

(2,[b,a,z])

(1,[b,a,
r])

Lara also has an IR with two "views".

Element-wise
vector addition

x + y
for {
 (idx_x, val_x) !<- x
 (idx_y, val_y) !<- y
 if idx_x !== idx_y
} yield (idx_x, val_x + val_y)

For-comprehension

A Monadic View that enables Dataflow optimisations
➡Operator Fusion and Operator Pushdown

8

[f,o,o]
[b,a,r]
[b,a,z]

Matrix A

How does Lara work?
Lara has a Quotation Based DSL embedded in Scala.

Types (Monads):
• DataBag A !!::= Multiset A
• Vector A !!::= Set (ℕ, A)
• Matrix A !!::= Set ((ℕ, ℕ), A)

Operations:
• For-comprehensions
• Linear algebra functions

Type conversions track provenance:
• DataBag (ℕ, Vector A) !-> Matrix A
• DataBag A !-> (A !-> (ℕ, ℕ)) !-> Matrix A

DataBag (ℕ, Vector A)

(0,[f,o,o])

(2,[b,a,z])

(1,[b,a,
r])

Lara also has an IR with two "views".

Element-wise
vector addition

x + y
for {
 (idx_x, val_x) !<- x
 (idx_y, val_y) !<- y
 if idx_x !== idx_y
} yield (idx_x, val_x + val_y)

For-comprehension

A Monadic View that enables Dataflow optimisations
➡Operator Fusion and Operator Pushdown

A Combinator View that enables Domain-specific opts.

8

[f,o,o]
[b,a,r]
[b,a,z]

Matrix A

How does Lara work?
Lara has a Quotation Based DSL embedded in Scala.

Types (Monads):
• DataBag A !!::= Multiset A
• Vector A !!::= Set (ℕ, A)
• Matrix A !!::= Set ((ℕ, ℕ), A)

Operations:
• For-comprehensions
• Linear algebra functions

Type conversions track provenance:
• DataBag (ℕ, Vector A) !-> Matrix A
• DataBag A !-> (A !-> (ℕ, ℕ)) !-> Matrix A

DataBag (ℕ, Vector A)

(0,[f,o,o])

(2,[b,a,z])

(1,[b,a,
r])

Lara also has an IR with two "views".

Element-wise
vector addition

x + y
for {
 (idx_x, val_x) !<- x
 (idx_y, val_y) !<- y
 if idx_x !== idx_y
} yield (idx_x, val_x + val_y)

For-comprehension

A Monadic View that enables Dataflow optimisations
➡Operator Fusion and Operator Pushdown

A Combinator View that enables Domain-specific opts.
➡ Instruction selection and Linear Algebra rewrites

8

[f,o,o]
[b,a,r]
[b,a,z]

Matrix A

How does Lara work?
Lara has a Quotation Based DSL embedded in Scala.

Types (Monads):
• DataBag A !!::= Multiset A
• Vector A !!::= Set (ℕ, A)
• Matrix A !!::= Set ((ℕ, ℕ), A)

Operations:
• For-comprehensions
• Linear algebra functions

Type conversions track provenance:
• DataBag (ℕ, Vector A) !-> Matrix A
• DataBag A !-> (A !-> (ℕ, ℕ)) !-> Matrix A

DataBag (ℕ, Vector A)

(0,[f,o,o])

(2,[b,a,z])

(1,[b,a,
r])

Lara also has an IR with two "views".

Element-wise
vector addition

x + y

Gram matrix
calculation

XTX

for {
 (idx_x, val_x) !<- x
 (idx_y, val_y) !<- y
 if idx_x !== idx_y
} yield (idx_x, val_x + val_y)

For-comprehension

A Monadic View that enables Dataflow optimisations
➡Operator Fusion and Operator Pushdown

A Combinator View that enables Domain-specific opts.
➡ Instruction selection and Linear Algebra rewrites

8

[f,o,o]
[b,a,r]
[b,a,z]

Matrix A

How does Lara work?
Lara has a Quotation Based DSL embedded in Scala.

Types (Monads):
• DataBag A !!::= Multiset A
• Vector A !!::= Set (ℕ, A)
• Matrix A !!::= Set ((ℕ, ℕ), A)

Operations:
• For-comprehensions
• Linear algebra functions

Type conversions track provenance:
• DataBag (ℕ, Vector A) !-> Matrix A
• DataBag A !-> (A !-> (ℕ, ℕ)) !-> Matrix A

DataBag (ℕ, Vector A)

(0,[f,o,o])

(2,[b,a,z])

(1,[b,a,
r])

Lara also has an IR with two "views".

Element-wise
vector addition

x + y

Gram matrix
calculation

XTX

for {
 (idx_x, val_x) !<- x
 (idx_y, val_y) !<- y
 if idx_x !== idx_y
} yield (idx_x, val_x + val_y)

For-comprehension

A Monadic View that enables Dataflow optimisations
➡Operator Fusion and Operator Pushdown

A Combinator View that enables Domain-specific opts.
➡ Instruction selection and Linear Algebra rewrites

8

[f,o,o]
[b,a,r]
[b,a,z]

Matrix A

How does Lara work?
Lara has a Quotation Based DSL embedded in Scala.

Types (Monads):
• DataBag A !!::= Multiset A
• Vector A !!::= Set (ℕ, A)
• Matrix A !!::= Set ((ℕ, ℕ), A)

Operations:
• For-comprehensions
• Linear algebra functions

Type conversions track provenance:
• DataBag (ℕ, Vector A) !-> Matrix A
• DataBag A !-> (A !-> (ℕ, ℕ)) !-> Matrix A

DataBag (ℕ, Vector A)

(0,[f,o,o])

(2,[b,a,z])

(1,[b,a,
r])

Lara also has an IR with two "views".

Element-wise
vector addition

x + y

Gram matrix
calculation

XTX

for {
 (idx_x, val_x) !<- x
 (idx_y, val_y) !<- y
 if idx_x !== idx_y
} yield (idx_x, val_x + val_y)

For-comprehension

Operator tree

A Monadic View that enables Dataflow optimisations
➡Operator Fusion and Operator Pushdown

A Combinator View that enables Domain-specific opts.
➡ Instruction selection and Linear Algebra rewrites

8

[f,o,o]
[b,a,r]
[b,a,z]

Matrix A

How does Lara work?
Lara has a Quotation Based DSL embedded in Scala.

Types (Monads):
• DataBag A !!::= Multiset A
• Vector A !!::= Set (ℕ, A)
• Matrix A !!::= Set ((ℕ, ℕ), A)

Operations:
• For-comprehensions
• Linear algebra functions

Type conversions track provenance:
• DataBag (ℕ, Vector A) !-> Matrix A
• DataBag A !-> (A !-> (ℕ, ℕ)) !-> Matrix A

DataBag (ℕ, Vector A)

(0,[f,o,o])

(2,[b,a,z])

(1,[b,a,
r])

Lara also has an IR with two "views".

Element-wise
vector addition

x + y

Gram matrix
calculation

XTX

for {
 (idx_x, val_x) !<- x
 (idx_y, val_y) !<- y
 if idx_x !== idx_y
} yield (idx_x, val_x + val_y)

For-comprehension

Operator tree

A Monadic View that enables Dataflow optimisations
➡Operator Fusion and Operator Pushdown

A Combinator View that enables Domain-specific opts.
➡ Instruction selection and Linear Algebra rewrites

8

[f,o,o]
[b,a,r]
[b,a,z]

Matrix A

How does Lara work?
Lara has a Quotation Based DSL embedded in Scala.

Types (Monads):
• DataBag A !!::= Multiset A
• Vector A !!::= Set (ℕ, A)
• Matrix A !!::= Set ((ℕ, ℕ), A)

Operations:
• For-comprehensions
• Linear algebra functions

Type conversions track provenance:
• DataBag (ℕ, Vector A) !-> Matrix A
• DataBag A !-> (A !-> (ℕ, ℕ)) !-> Matrix A

DataBag (ℕ, Vector A)

(0,[f,o,o])

(2,[b,a,z])

(1,[b,a,
r])

Lara also has an IR with two "views".

Element-wise
vector addition

x + y

Gram matrix
calculation

XTX

for {
 (idx_x, val_x) !<- x
 (idx_y, val_y) !<- y
 if idx_x !== idx_y
} yield (idx_x, val_x + val_y)

For-comprehension

Operator tree

A Monadic View that enables Dataflow optimisations
➡Operator Fusion and Operator Pushdown

A Combinator View that enables Domain-specific opts.
➡ Instruction selection and Linear Algebra rewrites

8

[f,o,o]
[b,a,r]
[b,a,z]

Matrix A

How does Lara work?
Lara has a Quotation Based DSL embedded in Scala.

Types (Monads):
• DataBag A !!::= Multiset A
• Vector A !!::= Set (ℕ, A)
• Matrix A !!::= Set ((ℕ, ℕ), A)

Operations:
• For-comprehensions
• Linear algebra functions

Type conversions track provenance:
• DataBag (ℕ, Vector A) !-> Matrix A
• DataBag A !-> (A !-> (ℕ, ℕ)) !-> Matrix A

DataBag (ℕ, Vector A)

(0,[f,o,o])

(2,[b,a,z])

(1,[b,a,
r])

Lara also has an IR with two "views".

Element-wise
vector addition

x + y

Gram matrix
calculation

XTX

for {
 (idx_x, val_x) !<- x
 (idx_y, val_y) !<- y
 if idx_x !== idx_y
} yield (idx_x, val_x + val_y)

For-comprehension

Operator tree

A Monadic View that enables Dataflow optimisations
➡Operator Fusion and Operator Pushdown

A Combinator View that enables Domain-specific opts.
➡ Instruction selection and Linear Algebra rewrites

8

• Stream A !!::= Infinite Multiset A

[f,o,o]
[b,a,r]
[b,a,z]

Matrix A

Arc - Compiler Approach

9

Arc - Compiler Approach

9

Arc IR Compiler

Embedded DSL

Arcon Runtime

Original approach

Arc - Compiler Approach

9

Arc IR Compiler

Embedded DSL

Arcon Runtime

Original approach

1. Lexing
2. Parsing
3. Macro expansion
4. Name resolution
5. Type inference
6. Dataflow optimisations
7. Code generation

Arc - Compiler Approach

9

Arc IR Compiler

Embedded DSL

Arcon Runtime

Original approach Current approach

MLIR (Multi-Level IR)

Embedded DSL

Arcon Runtime

?

?

?

?

?

?

? ?

? ?
?

?

? ?

?

? 1. Lexing
2. Parsing
3. Macro expansion
4. Name resolution
5. Type inference
6. Dataflow optimisations
7. Code generation

What is MLIR (Multi-Level IR)?

10

What is MLIR (Multi-Level IR)?

10

Where did MLIR come from?

11

Where did MLIR come from?

11

Compiler infrastructure of

Google's TensorFlow

Where did MLIR come from?

11

Problem: No re-use between IR compilers

Compiler infrastructure of

Google's TensorFlow

Where did MLIR come from?

11

Problem: No re-use between IR compilers
➡A compiler infrastructure like LLVM's is needed

Compiler infrastructure of

Google's TensorFlow

Where did MLIR come from?

11

Compiler infrastructure of

languages using LLVM

Problem: No re-use between IR compilers
➡A compiler infrastructure like LLVM's is needed

Compiler infrastructure of

Google's TensorFlow

Where did MLIR come from?

11

Compiler infrastructure of

languages using LLVM

Problem: No re-use between IR compilers
➡A compiler infrastructure like LLVM's is needed

Problem: LLVM is locked to one level of abstraction

Compiler infrastructure of

Google's TensorFlow

Where did MLIR come from?

11

Compiler infrastructure of

languages using LLVM

Problem: No re-use between IR compilers
➡A compiler infrastructure like LLVM's is needed

Problem: LLVM is locked to one level of abstraction
➡ There is a need for a more general solution

Compiler infrastructure of

Google's TensorFlow

How does MLIR work?

12

How does MLIR work?

MLIR is an IR which can be extended with new
"dialects"

12

How does MLIR work?

MLIR is an IR which can be extended with new
"dialects"

Dialects define operations, types, type
constraints, rewrite rules, lowerings, ...

12

How does MLIR work?

MLIR is an IR which can be extended with new
"dialects"

Dialects define operations, types, type
constraints, rewrite rules, lowerings, ...

Dialects adhere to the same meta-syntax and
meta-semantics

12

How does MLIR work?

MLIR is an IR which can be extended with new
"dialects"

Dialects define operations, types, type
constraints, rewrite rules, lowerings, ...

Dialects adhere to the same meta-syntax and
meta-semantics
➡ Dialects can coexist in the same program

12

How does MLIR work?

MLIR is an IR which can be extended with new
"dialects"

Dialects define operations, types, type
constraints, rewrite rules, lowerings, ...

Dialects adhere to the same meta-syntax and
meta-semantics
➡ Dialects can coexist in the same program

MLIR handles parsing, type checking/
inference, line-number tracking, ...

12

How does MLIR work?

MLIR is an IR which can be extended with new
"dialects"

Dialects define operations, types, type
constraints, rewrite rules, lowerings, ...

Dialects adhere to the same meta-syntax and
meta-semantics
➡ Dialects can coexist in the same program

MLIR handles parsing, type checking/
inference, line-number tracking, ...

Additionally, MLIR provides tooling for testing,
parallel compilation, documentation, CLI, ...

12

How does MLIR work?

MLIR is an IR which can be extended with new
"dialects"

Dialects define operations, types, type
constraints, rewrite rules, lowerings, ...

Dialects adhere to the same meta-syntax and
meta-semantics
➡ Dialects can coexist in the same program

MLIR handles parsing, type checking/
inference, line-number tracking, ...

Additionally, MLIR provides tooling for testing,
parallel compilation, documentation, CLI, ...

12

Builtin dialects (14 total):

How does MLIR work?

MLIR is an IR which can be extended with new
"dialects"

Dialects define operations, types, type
constraints, rewrite rules, lowerings, ...

Dialects adhere to the same meta-syntax and
meta-semantics
➡ Dialects can coexist in the same program

MLIR handles parsing, type checking/
inference, line-number tracking, ...

Additionally, MLIR provides tooling for testing,
parallel compilation, documentation, CLI, ...

12

Builtin dialects (14 total):
• std - Basic types and arithmetics

How does MLIR work?

MLIR is an IR which can be extended with new
"dialects"

Dialects define operations, types, type
constraints, rewrite rules, lowerings, ...

Dialects adhere to the same meta-syntax and
meta-semantics
➡ Dialects can coexist in the same program

MLIR handles parsing, type checking/
inference, line-number tracking, ...

Additionally, MLIR provides tooling for testing,
parallel compilation, documentation, CLI, ...

12

Builtin dialects (14 total):
• std - Basic types and arithmetics
• loop - Ordinary loops

How does MLIR work?

MLIR is an IR which can be extended with new
"dialects"

Dialects define operations, types, type
constraints, rewrite rules, lowerings, ...

Dialects adhere to the same meta-syntax and
meta-semantics
➡ Dialects can coexist in the same program

MLIR handles parsing, type checking/
inference, line-number tracking, ...

Additionally, MLIR provides tooling for testing,
parallel compilation, documentation, CLI, ...

12

Builtin dialects (14 total):
• std - Basic types and arithmetics
• loop - Ordinary loops
• affine - Polyhedral loops

How does MLIR work?

MLIR is an IR which can be extended with new
"dialects"

Dialects define operations, types, type
constraints, rewrite rules, lowerings, ...

Dialects adhere to the same meta-syntax and
meta-semantics
➡ Dialects can coexist in the same program

MLIR handles parsing, type checking/
inference, line-number tracking, ...

Additionally, MLIR provides tooling for testing,
parallel compilation, documentation, CLI, ...

12

Builtin dialects (14 total):
• std - Basic types and arithmetics
• loop - Ordinary loops
• affine - Polyhedral loops
• linalg - Linear algebra

How does MLIR work?

MLIR is an IR which can be extended with new
"dialects"

Dialects define operations, types, type
constraints, rewrite rules, lowerings, ...

Dialects adhere to the same meta-syntax and
meta-semantics
➡ Dialects can coexist in the same program

MLIR handles parsing, type checking/
inference, line-number tracking, ...

Additionally, MLIR provides tooling for testing,
parallel compilation, documentation, CLI, ...

12

Builtin dialects (14 total):
• std - Basic types and arithmetics
• loop - Ordinary loops
• affine - Polyhedral loops
• linalg - Linear algebra
• gpu - CUDA & OpenCL abstraction

How does MLIR work?

MLIR is an IR which can be extended with new
"dialects"

Dialects define operations, types, type
constraints, rewrite rules, lowerings, ...

Dialects adhere to the same meta-syntax and
meta-semantics
➡ Dialects can coexist in the same program

MLIR handles parsing, type checking/
inference, line-number tracking, ...

Additionally, MLIR provides tooling for testing,
parallel compilation, documentation, CLI, ...

12

Builtin dialects (14 total):
• std - Basic types and arithmetics
• loop - Ordinary loops
• affine - Polyhedral loops
• linalg - Linear algebra
• gpu - CUDA & OpenCL abstraction
• llvm - LLVM-IR code generation

How does MLIR work?

MLIR is an IR which can be extended with new
"dialects"

Dialects define operations, types, type
constraints, rewrite rules, lowerings, ...

Dialects adhere to the same meta-syntax and
meta-semantics
➡ Dialects can coexist in the same program

MLIR handles parsing, type checking/
inference, line-number tracking, ...

Additionally, MLIR provides tooling for testing,
parallel compilation, documentation, CLI, ...

12

Builtin dialects (14 total):
• std - Basic types and arithmetics
• loop - Ordinary loops
• affine - Polyhedral loops
• linalg - Linear algebra
• gpu - CUDA & OpenCL abstraction
• llvm - LLVM-IR code generation

MLIR - Meta-Syntax/Semantics

13

Meta-syntax (with some parts optional):

MLIR - Meta-Syntax/Semantics

13

Meta-syntax (with some parts optional):
• ASSIGNMENT !!::= %VAR_NAME = OPERATION

MLIR - Meta-Syntax/Semantics

13

Meta-syntax (with some parts optional):
• ASSIGNMENT !!::= %VAR_NAME = OPERATION
• OPERATION !!::= "DIALECT.OP_NAME"

MLIR - Meta-Syntax/Semantics

13

.....

Meta-syntax (with some parts optional):
• ASSIGNMENT !!::= %VAR_NAME = OPERATION
• OPERATION !!::= "DIALECT.OP_NAME"

MLIR - Meta-Syntax/Semantics

13

(ARGS)

Meta-syntax (with some parts optional):
• ASSIGNMENT !!::= %VAR_NAME = OPERATION
• OPERATION !!::= "DIALECT.OP_NAME"

MLIR - Meta-Syntax/Semantics

13

(ARGS) (REGIONS)

Meta-syntax (with some parts optional):
• ASSIGNMENT !!::= %VAR_NAME = OPERATION
• OPERATION !!::= "DIALECT.OP_NAME"

MLIR - Meta-Syntax/Semantics

13

(ARGS) {ATTRS}(REGIONS)

Meta-syntax (with some parts optional):
• ASSIGNMENT !!::= %VAR_NAME = OPERATION
• OPERATION !!::= "DIALECT.OP_NAME"

MLIR - Meta-Syntax/Semantics

13

(ARGS) {ATTRS}(REGIONS) : (TYPES) !-> (TYPES)

Meta-syntax (with some parts optional):
• ASSIGNMENT !!::= %VAR_NAME = OPERATION
• OPERATION !!::= "DIALECT.OP_NAME"
• TYPE !!::= !DIALECT.TYPE_NAME<TYPES>

MLIR - Meta-Syntax/Semantics

13

(ARGS) {ATTRS}(REGIONS) : (TYPES) !-> (TYPES)

Meta-syntax (with some parts optional):
• ASSIGNMENT !!::= %VAR_NAME = OPERATION
• OPERATION !!::= "DIALECT.OP_NAME"
• TYPE !!::= !DIALECT.TYPE_NAME<TYPES>

Meta-semantics: All values are SSA, typed, scoped (and so on)

MLIR - Meta-Syntax/Semantics

13

(ARGS) {ATTRS}(REGIONS) : (TYPES) !-> (TYPES)

Meta-syntax (with some parts optional):
• ASSIGNMENT !!::= %VAR_NAME = OPERATION
• OPERATION !!::= "DIALECT.OP_NAME"
• TYPE !!::= !DIALECT.TYPE_NAME<TYPES>

Meta-semantics: All values are SSA, typed, scoped (and so on)

Example:

MLIR - Meta-Syntax/Semantics

13

(ARGS) {ATTRS}(REGIONS) : (TYPES) !-> (TYPES)

Compute the 
max of two values

Meta-syntax (with some parts optional):
• ASSIGNMENT !!::= %VAR_NAME = OPERATION
• OPERATION !!::= "DIALECT.OP_NAME"
• TYPE !!::= !DIALECT.TYPE_NAME<TYPES>

Meta-semantics: All values are SSA, typed, scoped (and so on)

Example:

MLIR - Meta-Syntax/Semantics

13

(ARGS) {ATTRS}(REGIONS) : (TYPES) !-> (TYPES)

Compute the 
max of two values
 c = a > b
 max = if c {
 a
 } else {
 b
 }

Meta-syntax (with some parts optional):
• ASSIGNMENT !!::= %VAR_NAME = OPERATION
• OPERATION !!::= "DIALECT.OP_NAME"
• TYPE !!::= !DIALECT.TYPE_NAME<TYPES>

Meta-semantics: All values are SSA, typed, scoped (and so on)

Example:

MLIR - Meta-Syntax/Semantics

13

(ARGS) {ATTRS}(REGIONS) : (TYPES) !-> (TYPES)

Compute the 
max of two values
 c = a > b
 max = if c {
 a
 } else {
 b
 }

%c = "arc.greater_than"(%a, %b)

Meta-syntax (with some parts optional):
• ASSIGNMENT !!::= %VAR_NAME = OPERATION
• OPERATION !!::= "DIALECT.OP_NAME"
• TYPE !!::= !DIALECT.TYPE_NAME<TYPES>

Meta-semantics: All values are SSA, typed, scoped (and so on)

Example:

MLIR - Meta-Syntax/Semantics

13

(ARGS) {ATTRS}(REGIONS) : (TYPES) !-> (TYPES)

Compute the 
max of two values
 c = a > b
 max = if c {
 a
 } else {
 b
 }

%c = "arc.greater_than"(%a, %b) %c = "arc.greater_than"(%a, %b) : (!arc.int, !arc.int) !-> (!arc.bool)

Meta-syntax (with some parts optional):
• ASSIGNMENT !!::= %VAR_NAME = OPERATION
• OPERATION !!::= "DIALECT.OP_NAME"
• TYPE !!::= !DIALECT.TYPE_NAME<TYPES>

Meta-semantics: All values are SSA, typed, scoped (and so on)

Example:

MLIR - Meta-Syntax/Semantics

13

(ARGS) {ATTRS}(REGIONS) : (TYPES) !-> (TYPES)

Compute the 
max of two values
 c = a > b
 max = if c {
 a
 } else {
 b
 }

%c = "arc.greater_than"(%a, %b) %c = "arc.greater_than"(%a, %b) : (!arc.int, !arc.int) !-> (!arc.bool) %c = "arc.greater_than"(%a, %b) : (!arc.int, !arc.int) !-> (!arc.bool)
%max = "arc.if"(%c)

Meta-syntax (with some parts optional):
• ASSIGNMENT !!::= %VAR_NAME = OPERATION
• OPERATION !!::= "DIALECT.OP_NAME"
• TYPE !!::= !DIALECT.TYPE_NAME<TYPES>

Meta-semantics: All values are SSA, typed, scoped (and so on)

Example:

MLIR - Meta-Syntax/Semantics

13

(ARGS) {ATTRS}(REGIONS) : (TYPES) !-> (TYPES)

Compute the 
max of two values
 c = a > b
 max = if c {
 a
 } else {
 b
 }

%c = "arc.greater_than"(%a, %b) %c = "arc.greater_than"(%a, %b) : (!arc.int, !arc.int) !-> (!arc.bool) %c = "arc.greater_than"(%a, %b) : (!arc.int, !arc.int) !-> (!arc.bool)
%max = "arc.if"(%c)
%c = "arc.greater_than"(%a, %b) : (!arc.int, !arc.int) !-> (!arc.bool)
%max = "arc.if"(%c) ({
 !!...
}, {
 !!...
}) : (arc.bool) !-> (!arc.int)

Meta-syntax (with some parts optional):
• ASSIGNMENT !!::= %VAR_NAME = OPERATION
• OPERATION !!::= "DIALECT.OP_NAME"
• TYPE !!::= !DIALECT.TYPE_NAME<TYPES>

Meta-semantics: All values are SSA, typed, scoped (and so on)

Example:

MLIR - Meta-Syntax/Semantics

13

(ARGS) {ATTRS}(REGIONS) : (TYPES) !-> (TYPES)

Compute the 
max of two values
 c = a > b
 max = if c {
 a
 } else {
 b
 }

%c = "arc.greater_than"(%a, %b) %c = "arc.greater_than"(%a, %b) : (!arc.int, !arc.int) !-> (!arc.bool) %c = "arc.greater_than"(%a, %b) : (!arc.int, !arc.int) !-> (!arc.bool)
%max = "arc.if"(%c)
%c = "arc.greater_than"(%a, %b) : (!arc.int, !arc.int) !-> (!arc.bool)
%max = "arc.if"(%c) ({
 !!...
}, {
 !!...
}) : (arc.bool) !-> (!arc.int)

%c = "arc.greater_than"(%a, %b) : (!arc.int, !arc.int) !-> (!arc.bool)
%max = "arc.if"(%c) ({
 "arc.yield"(%a)
}, {
 "arc.yield"(%b)
}) : (arc.bool) !-> (!arc.int)

Meta-syntax (with some parts optional):
• ASSIGNMENT !!::= %VAR_NAME = OPERATION
• OPERATION !!::= "DIALECT.OP_NAME"
• TYPE !!::= !DIALECT.TYPE_NAME<TYPES>

Meta-semantics: All values are SSA, typed, scoped (and so on)

Example:

MLIR - Meta-Syntax/Semantics

13

(ARGS) {ATTRS}(REGIONS) : (TYPES) !-> (TYPES)

Compute the 
max of two values
 c = a > b
 max = if c {
 a
 } else {
 b
 }

%c = "arc.greater_than"(%a, %b) %c = "arc.greater_than"(%a, %b) : (!arc.int, !arc.int) !-> (!arc.bool) %c = "arc.greater_than"(%a, %b) : (!arc.int, !arc.int) !-> (!arc.bool)
%max = "arc.if"(%c)
%c = "arc.greater_than"(%a, %b) : (!arc.int, !arc.int) !-> (!arc.bool)
%max = "arc.if"(%c) ({
 !!...
}, {
 !!...
}) : (arc.bool) !-> (!arc.int)

%c = "arc.greater_than"(%a, %b) : (!arc.int, !arc.int) !-> (!arc.bool)
%max = "arc.if"(%c) ({
 "arc.yield"(%a)
}, {
 "arc.yield"(%b)
}) : (arc.bool) !-> (!arc.int)

%c = "arc.greater_than"(%a, %b) : (!arc.int, !arc.int) !-> (!arc.bool)
%max = "arc.if"(%c) ({
 "arc.yield"(%a) : (!arc.int) !-> (!arc.int)
}, {
 "arc.yield"(%b) : (!arc.int) !-> (!arc.int)
}) : (arc.bool) !-> (!arc.int)

Meta-syntax (with some parts optional):
• ASSIGNMENT !!::= %VAR_NAME = OPERATION
• OPERATION !!::= "DIALECT.OP_NAME"
• TYPE !!::= !DIALECT.TYPE_NAME<TYPES>

Meta-semantics: All values are SSA, typed, scoped (and so on)

Example:

MLIR - Meta-Syntax/Semantics

13

(ARGS) {ATTRS}(REGIONS) : (TYPES) !-> (TYPES)

Compute the 
max of two values
 c = a > b
 max = if c {
 a
 } else {
 b
 }

MLIR - Defining Operations

14

MLIR - Defining Operations

The structure of each operation is defined
using an high-level DSL, while details are
implemented in C++

14

MLIR - Defining Operations

The structure of each operation is defined
using an high-level DSL, while details are
implemented in C++

Example:

14

MLIR - Defining Operations

The structure of each operation is defined
using an high-level DSL, while details are
implemented in C++

Example:

14

def GreaterThanOp : Op<"greater_than", [.............................]> {

}

MLIR - Defining Operations

The structure of each operation is defined
using an high-level DSL, while details are
implemented in C++

Example:

14

def GreaterThanOp : Op<"greater_than", [.............................]> {

}

MLIR - Defining Operations

The structure of each operation is defined
using an high-level DSL, while details are
implemented in C++

Example:

14

 let summary = "greater than operation";
 let description = [{ Returns true if $left is greater than $right }];

def GreaterThanOp : Op<"greater_than", [.............................]> {

}

MLIR - Defining Operations

The structure of each operation is defined
using an high-level DSL, while details are
implemented in C++

Example:

14

 let summary = "greater than operation";
 let description = [{ Returns true if $left is greater than $right }];
 let arguments = (ins AnyType:$left, AnyType:$right);

def GreaterThanOp : Op<"greater_than", [.............................]> {

}

MLIR - Defining Operations

The structure of each operation is defined
using an high-level DSL, while details are
implemented in C++

Example:

14

 let summary = "greater than operation";
 let description = [{ Returns true if $left is greater than $right }];
 let arguments = (ins AnyType:$left, AnyType:$right);
 let results = (outs BoolType:$output);

def GreaterThanOp : Op<"greater_than", [.............................]> {

}

MLIR - Defining Operations

The structure of each operation is defined
using an high-level DSL, while details are
implemented in C++

Example:

14

def GreaterThanOp : Op<"greater_than", [ArgsAreSameType, NoSideEffect]> {

}

 let summary = "greater than operation";
 let description = [{ Returns true if $left is greater than $right }];
 let arguments = (ins AnyType:$left, AnyType:$right);
 let results = (outs BoolType:$output);

def GreaterThanOp : Op<"greater_than", [.............................]> {

}

MLIR - Defining Operations

The structure of each operation is defined
using an high-level DSL, while details are
implemented in C++

Example:

14

def GreaterThanOp : Op<"greater_than", [ArgsAreSameType, NoSideEffect]> {

}

 let summary = "greater than operation";
 let description = [{ Returns true if $left is greater than $right }];
 let arguments = (ins AnyType:$left, AnyType:$right);
 let results = (outs BoolType:$output);
 !// Optional
 let regions = !!...
 let verifier = !!...
 let parser = !!...
 let printer = !!...

15

Current approach

MLIR (Multi-Level IR)

Embedded DSL

Arcon Runtime

Arc Dialect?

?

?

?

?

?

? ?

? ?
?

?

MLIR (Multi-Level IR)

Embedded DSL

Arcon Runtime

15

Current approach

MLIR (Multi-Level IR)

Embedded DSL

Arcon Runtime

Arc Dialect?

?

?

?

?

?

? ?

? ?
?

?

MLIR (Multi-Level IR)

Embedded DSL

Arcon Runtime

arc stdlinalg
(new)

15

Current approach

MLIR (Multi-Level IR)

Embedded DSL

Arcon Runtime

Arc Dialect?

?

?

?

?

?

? ?

? ?
?

?

MLIR (Multi-Level IR)

data#flow loop vector std

Embedded DSL

Arcon Runtime

arc stdlinalg
(new)

(new)

15

Current approach

MLIR (Multi-Level IR)

Embedded DSL

Arcon Runtime

Arc Dialect?

?

?

?

?

?

? ?

? ?
?

?

MLIR (Multi-Level IR)

data#flow rust llvm gpu

data#flow loop vector std

Embedded DSL

Arcon Runtime

arc stdlinalg
(new)

(new)

(new) (new)

15

Current approach

MLIR (Multi-Level IR)

Embedded DSL

Arcon Runtime

Arc Dialect?

?

?

?

?

?

? ?

? ?
?

?

MLIR (Multi-Level IR)

data#flow rust llvm gpu

data#flow loop vector std

Embedded DSL

Arcon Runtime

arc stdlinalg

Summary

(new)

(new)

(new) (new)

15

Current approach

MLIR (Multi-Level IR)

Embedded DSL

Arcon Runtime

Arc Dialect?

?

?

?

?

?

? ?

? ?
?

?

MLIR (Multi-Level IR)

data#flow rust llvm gpu

data#flow loop vector std

Embedded DSL

Arcon Runtime

arc stdlinalg

Arc is a dialect in MLIR for data analytics
that takes inspiration from Lara

Summary

(new)

(new)

(new) (new)

15

Current approach

MLIR (Multi-Level IR)

Embedded DSL

Arcon Runtime

Arc Dialect?

?

?

?

?

?

? ?

? ?
?

?

MLIR (Multi-Level IR)

data#flow rust llvm gpu

data#flow loop vector std

Embedded DSL

Arcon Runtime

arc stdlinalg

Arc is a dialect in MLIR for data analytics
that takes inspiration from Lara

Arc aims to extend Lara's model with
support for Stream data types

Summary

(new)

(new)

(new) (new)

15

Current approach

MLIR (Multi-Level IR)

Embedded DSL

Arcon Runtime

Arc Dialect?

?

?

?

?

?

? ?

? ?
?

?

MLIR (Multi-Level IR)

data#flow rust llvm gpu

data#flow loop vector std

Embedded DSL

Arcon Runtime

arc stdlinalg

Arc is a dialect in MLIR for data analytics
that takes inspiration from Lara

Arc aims to extend Lara's model with
support for Stream data types

Through MLIR, Arc can reuse existing
compiler technology and widen its scope

Summary

(new)

(new)

(new) (new)

15

Current approach

MLIR (Multi-Level IR)

Embedded DSL

Arcon Runtime

Arc Dialect?

?

?

?

?

?

? ?

? ?
?

?

MLIR (Multi-Level IR)

data#flow rust llvm gpu

data#flow loop vector std

Embedded DSL

Arcon Runtime

arc stdlinalg

Arc is a dialect in MLIR for data analytics
that takes inspiration from Lara

Arc aims to extend Lara's model with
support for Stream data types

Through MLIR, Arc can reuse existing
compiler technology and widen its scope

Upcoming work: Embedded DSL Design

Summary

(new)

(new)

(new) (new)

Presenter: Klas Segeljakt <klasseg@kth.se>

Extra slides

16

mailto:klasseg@kth.se

Lara's DSL - Example

17

Lara's DSL - Example

17

Description

Based on numerical and categorical
data, train a Ridge Regression model
with 3-fold cross-validation, and  
Mean Squared Error as the loss function,
to the predict number of future clicks on
advertisements

Lara's DSL - Example

17

Description

Based on numerical and categorical
data, train a Ridge Regression model
with 3-fold cross-validation, and  
Mean Squared Error as the loss function,
to the predict number of future clicks on
advertisements

Lara's DSL - Example

17

Description

Based on numerical and categorical
data, train a Ridge Regression model
with 3-fold cross-validation, and  
Mean Squared Error as the loss function,
to the predict number of future clicks on
advertisements

Input data: [L,N,N,N,N,N,N,N,N,N,N,C,C,C,C,C]

Lara's DSL - Example

17

Description

Based on numerical and categorical
data, train a Ridge Regression model
with 3-fold cross-validation, and  
Mean Squared Error as the loss function,
to the predict number of future clicks on
advertisements

Input data: [L,N,N,N,N,N,N,N,N,N,N,C,C,C,C,C]

Lara's DSL - Example

17

Description

Based on numerical and categorical
data, train a Ridge Regression model
with 3-fold cross-validation, and  
Mean Squared Error as the loss function,
to the predict number of future clicks on
advertisements

Input data: [L,N,N,N,N,N,N,N,N,N,N,C,C,C,C,C]

Lara's DSL - Example

17

Description

Based on numerical and categorical
data, train a Ridge Regression model
with 3-fold cross-validation, and  
Mean Squared Error as the loss function,
to the predict number of future clicks on
advertisements

Input data: [L,N,N,N,N,N,N,N,N,N,N,C,C,C,C,C]

Lara's DSL - Example

17

Description

Based on numerical and categorical
data, train a Ridge Regression model
with 3-fold cross-validation, and  
Mean Squared Error as the loss function,
to the predict number of future clicks on
advertisements

Input data: [L,N,N,N,N,N,N,N,N,N,N,C,C,C,C,C]

Lara's DSL - Example

17

Description

Based on numerical and categorical
data, train a Ridge Regression model
with 3-fold cross-validation, and  
Mean Squared Error as the loss function,
to the predict number of future clicks on
advertisements

Input data: [L,N,N,N,N,N,N,N,N,N,N,C,C,C,C,C]

Lara's DSL - Example

17

Description

Based on numerical and categorical
data, train a Ridge Regression model
with 3-fold cross-validation, and  
Mean Squared Error as the loss function,
to the predict number of future clicks on
advertisements

Input data: [L,N,N,N,N,N,N,N,N,N,N,C,C,C,C,C]

Lara's DSL - Example

17

Description

Based on numerical and categorical
data, train a Ridge Regression model
with 3-fold cross-validation, and  
Mean Squared Error as the loss function,
to the predict number of future clicks on
advertisements

ŵridge = arg min
w

N

∑
i=1

(yi − Xiw)2 + λ
K

∑
i=1

w2
i

Input data: [L,N,N,N,N,N,N,N,N,N,N,C,C,C,C,C]

Lara's DSL - Example

17

Description

Based on numerical and categorical
data, train a Ridge Regression model
with 3-fold cross-validation, and  
Mean Squared Error as the loss function,
to the predict number of future clicks on
advertisements

ŵridge = (XTX + λI)−1(XTy)

ŵridge = arg min
w

N

∑
i=1

(yi − Xiw)2 + λ
K

∑
i=1

w2
i

Input data: [L,N,N,N,N,N,N,N,N,N,N,C,C,C,C,C]

Lara's DSL - Example

17

Description

Based on numerical and categorical
data, train a Ridge Regression model
with 3-fold cross-validation, and  
Mean Squared Error as the loss function,
to the predict number of future clicks on
advertisements

ŵridge = (XTX + λI)−1(XTy)
ŵridge = (XTX + λI) \ (XTy)

ŵridge = arg min
w

N

∑
i=1

(yi − Xiw)2 + λ
K

∑
i=1

w2
i

Input data: [L,N,N,N,N,N,N,N,N,N,N,C,C,C,C,C]

Lara's DSL - Example

17

Description

Based on numerical and categorical
data, train a Ridge Regression model
with 3-fold cross-validation, and  
Mean Squared Error as the loss function,
to the predict number of future clicks on
advertisements

{ŵridge = (XTX + λI)−1(XTy)
ŵridge = (XTX + λI) \ (XTy)

ŵridge = arg min
w

N

∑
i=1

(yi − Xiw)2 + λ
K

∑
i=1

w2
i

Input data: [L,N,N,N,N,N,N,N,N,N,N,C,C,C,C,C]

Lara's DSL - Example

17

Description

Based on numerical and categorical
data, train a Ridge Regression model
with 3-fold cross-validation, and  
Mean Squared Error as the loss function,
to the predict number of future clicks on
advertisements

{ŵridge = (XTX + λI)−1(XTy)
ŵridge = (XTX + λI) \ (XTy)

ŵridge = arg min
w

N

∑
i=1

(yi − Xiw)2 + λ
K

∑
i=1

w2
i

Input data: [L,N,N,N,N,N,N,N,N,N,N,C,C,C,C,C]

Lara's DSL - Example

17

Description

Based on numerical and categorical
data, train a Ridge Regression model
with 3-fold cross-validation, and  
Mean Squared Error as the loss function,
to the predict number of future clicks on
advertisements

{ŵridge = (XTX + λI)−1(XTy)
ŵridge = (XTX + λI) \ (XTy)

ŵridge = arg min
w

N

∑
i=1

(yi − Xiw)2 + λ
K

∑
i=1

w2
i

Input data: [L,N,N,N,N,N,N,N,N,N,N,C,C,C,C,C]

Lara's DSL - Example

17

Description

Based on numerical and categorical
data, train a Ridge Regression model
with 3-fold cross-validation, and  
Mean Squared Error as the loss function,
to the predict number of future clicks on
advertisements

{ŵridge = (XTX + λI)−1(XTy)
ŵridge = (XTX + λI) \ (XTy)

ŵridge = arg min
w

N

∑
i=1

(yi − Xiw)2 + λ
K

∑
i=1

w2
i

MSE =
1
N

N

∑
i=1

(yi − Xiw)2

Input data: [L,N,N,N,N,N,N,N,N,N,N,C,C,C,C,C]

Lara's DSL - Example

17

Description

Based on numerical and categorical
data, train a Ridge Regression model
with 3-fold cross-validation, and  
Mean Squared Error as the loss function,
to the predict number of future clicks on
advertisements

{
{

ŵridge = (XTX + λI)−1(XTy)
ŵridge = (XTX + λI) \ (XTy)

ŵridge = arg min
w

N

∑
i=1

(yi − Xiw)2 + λ
K

∑
i=1

w2
i

MSE =
1
N

N

∑
i=1

(yi − Xiw)2

Input data: [L,N,N,N,N,N,N,N,N,N,N,C,C,C,C,C]

Lara's DSL - Example

17

Description

Based on numerical and categorical
data, train a Ridge Regression model
with 3-fold cross-validation, and  
Mean Squared Error as the loss function,
to the predict number of future clicks on
advertisements

{
{

ŵridge = (XTX + λI)−1(XTy)
ŵridge = (XTX + λI) \ (XTy)

ŵridge = arg min
w

N

∑
i=1

(yi − Xiw)2 + λ
K

∑
i=1

w2
i

MSE =
1
N

N

∑
i=1

(yi − Xiw)2

Input data: [L,N,N,N,N,N,N,N,N,N,N,C,C,C,C,C]

References
[1] Beam.apache.org. (2020). Apache Beam. [online] Available at: https://beam.apache.org/ [Accessed 2 Mar. 2020].

[2] Walt, S.V.D., Colbert, S.C. and Varoquaux, G., 2011. The NumPy array: a structure for efficient numerical
computation. Computing in Science & Engineering, 13(2), pp.22-30.

[3] Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F. and Amarasinghe, S., 2013. Halide: a language and compiler for
optimizing parallelism, locality, and recomputation in image processing pipelines. Acm Sigplan Notices, 48(6), pp.519-530.

[4] Date, C.J. and Darwen, H., 1993. A Guide to the SQL Standard (Vol. 3). Reading: Addison-wesley.

[5] Arasu, A., Babu, S. and Widom, J., 2006. The CQL continuous query language: semantic foundations and query execution. The
VLDB Journal, 15(2), pp.121-142.

[6] Kunft, A., Katsifodimos, A., Schelter, S., Breß, S., Rabl, T. and Markl, V., 2019. An intermediate representation for optimizing
machine learning pipelines. Proceedings of the VLDB Endowment, 12(11), pp.1553-1567.

[7] Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N. and Czajkowski, G., 2010, June. Pregel: a system for
large-scale graph processing. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of data (pp.
135-146).

[8] Iyer, A.P., Pu, Q., Patel, K., Gonzalez, J.E. and Stoica, I., 2019. TEGRA: Efficient ad-hoc analytics on time-evolving graphs.
Technical report.

[9] Venkataraman, S., Bodzsar, E., Roy, I., AuYoung, A. and Schreiber, R.S., 2013, April. Presto: distributed machine learning and
graph processing with sparse matrices. In Proceedings of the 8th ACM European Conference on Computer Systems (pp. 197-210).

[10] Francis, N., Green, A., Guagliardo, P., Libkin, L., Lindaaker, T., Marsault, V., Plantikow, S., Rydberg, M., Selmer, P. and Taylor, A.,
2018, May. Cypher: An evolving query language for property graphs. In Proceedings of the 2018 International Conference on
Management of Data (pp. 1433-1445).

18

